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1 Introduction

In this paper, we study a dynamic model of voluntary disclosure of multiple news. Corporate

voluntary disclosure is one of the major sources of information in capital markets. The extant

theoretical literature on voluntary disclosure focuses on static models in which an interested party

(e.g., a �rm) may privately observe a single piece of private information (e.g., Dye 1985 and Jung and

Kwon 1988). Corporate disclosure environments, however, are characterized by multi-period and

multi-dimensional �ow of information from the �rm to the market. The interaction between these

two dimensions plays a critical role. When deciding whether to disclose one piece of information

a manager must also consider the possibility of learning and potentially disclosing a new piece of

information in the future.

To better understand the dynamic interaction between �rms and the capital market, we extend

Dye�s (1985) voluntary disclosure model with uncertainty about information endowment to a two-

period and two-signal setting. Our model demonstrates how dynamic considerations shape the

strategy of a privately informed agent and the market reactions to what he releases and when.

Our setting is such that absent information asymmetry, the �rm�s price at the end of the second

period is independent of the disclosure time of the �rm�s private information. Nevertheless, our

model shows that in equilibrium, the market price depends not only on what information has been

disclosed so far, but also on when it was disclosed. In particular, we show that the price at the end

of the second period given disclosure of one signal is higher if the signal is disclosed later in the

game. This result might be counter intuitive, as one may expect the market to reward the manager

for early disclosure of information, since then he seems less likely to be �hiding something.�

The intuition for our �nding that the price at the end of the second period given disclosure of

one signal is higher if the signal is disclosed later in the game is as follows. Let time be t 2 f0; 1g

and suppose it is now t = 1. Consider two histories on the equilibrium-path: in both the manager

disclosed a single signal x, but in history 1 he disclosed x at t = 0 while in history 2 he did that

at t = 1. The market price depends on x and on what the market believes about the second signal

given the history. Let y denote that second signal. The market considers three possibilities: the

manager does not know y, or he does know y and learned it at t = 1 or at t = 0. Obviously, if the

manager did not learn y the market�s inference is independent of the observed history. In case the

agent learned y at t = 1, the market�s inference is also independent of the observed history because
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in both cases he would reveal y if and only if it would increase the market price at t = 1 (relative

to non-disclosure of y). But what if the agent knew y at t = 0? If x is disclosed at t = 0 then

the market can infer that y is less than x and is small enough that revealing it would not increase

the price at t = 1. If x is disclosed at t = 1, the market additionally infers that in case he knew y

already at t = 0 but learned x only at t = 1, then y is lower than the threshold for disclosure of a

single signal at t = 0.1

On the face of it, one might expect that this additional negative inference about y if x is disclosed

later, should lead to more negative beliefs about y. But the opposite is true in equilibrium! Why?

There are two e¤ects that a¤ect investors�beliefs in opposite directions. On one hand, the lower

threshold implies that the expected y conditional on the agent knowing y is lower. On the other

hand, the lower threshold implies that it is less likely that the manger is informed, which increases

the expected value of y. This second e¤ect always dominates! The reason is that the agent still

discloses at t = 1 signals y that exceed the market perception at this time. Hence, in case of

the history with late disclosure, investors additionally rule out any y that is above the disclosure

threshold at t = 0 but below the threshold for disclosure at t = 1. Since the disclosure threshold at

t = 1 equals the average y for all agents�types who do not report at t = 1 (including the informed

and uninformed), ruling out these types which are lower than the overall average y increases the

expectation of y and hence the market price.

To further characterize strategic behavior and market inferences in our model, in Section 4

we characterize threshold equilibria. We show that under suitable conditions a threshold equilib-

rium exists.2 We then characterize the threshold equilibrium strategies and the properties of the

corresponding equilibrium prices.

1.1 Related Literature

The voluntary disclosure literature goes back to Grossman and Hart (1980), Grossman (1981) and

Milgrom (1981), who established the �unraveling result�, stating that under certain assumptions

(including common knowledge that an agent is privately informed, disclosing is costless and in-

formation is veri�able), in equilibrium all types disclose their information. In light of companies

1For this simple intuition, we assume that the agent follows a threshold strategy at t = 0. Our proof does not
make this assumption.

2 In most of the existing voluntary disclosure literature (e.g., Verrecchia 1983, Dye 1985, Acharya et al. 2011), the
equilibrium is unique and is characterized by a threshold strategy. In our model, due to multiple signals, it is not
guaranteed, and therefore we provide su¢ cient conditions for existence ( similar to Pae 2005).
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propensity to withhold some private information, the literature on voluntary disclosure evolved

around settings in which the unraveling result does not prevail. The two major streams of liter-

ature where: (i) assuming that disclosure is costly (pioneered by Jovanovic 1982 and Verrecchia

1983) and (ii) investors�uncertainty about information endowment (pioneered by Dye 1985 and

Jung and Kwon 1988). Our model follows Dye (1985) and Jung and Kwon (1988) and extends it

to a multi-signal and multi-period setting.

In spite of the vast literature that models voluntary disclosure, very little has been done on

multi-period settings and on multi-signals settings. Corporate disclosure environments however,

are characterized by multi-period and multi-dimensional �ow of information from the �rm to the

market.3

To the best of our knowledge the only papers that study multi-periods voluntary disclosures

are Shin (2003 and 2006), who discusses how his single disclosure period setting can be extended

to multiple disclosure periods, Einhorn and Ziv (2008) and Beyer and Dye (2011). The setting

studied in these papers as well as the dynamic considerations of the agents are very di¤erent from

ours. Shin (2003, 2006) studies a setting in which the �rms may learn a binary signal for each

of their projects that may either fail or succeed. In this binary setting, Shin (2003, 2006) studies

the �sanitization�strategy, under which the agent discloses only the good news. Einhorn and Ziv

(2008) study a setting in which in each period the manager may obtain a single signal about the

period�s cash �ows, where at the end of each period the realized cash �ows are publicly disclosed.

If the agent chooses to disclose his private signal, he incurs some disclosure costs. Finally, Beyer

and Dye (2011) study a reputation model in which the manager may learn a single private signal

in each of two periods. The manger can be either �forthcoming� and disclose any information

he learns or he may be �strategic.�At the end of each period, the �rm�s signal/cash �ow for the

period becomes public and the market updates beliefs about the value of the �rm and the type of

the agent. Importantly, the option to �wait for a better signal� that is behind our main result is

not present in any of these papers.

Our paper also adds to the understanding of management�s decision to selectively disclose

information. Most voluntary disclosure model assume a single signal setting, in which the manager

can either disclose all of his information or not disclose at all. The only exceptions that we are

aware of, in which agents may learn multiple-signals are Shin (2003, 2006), which we discussed
3For example, this gap is pointed out in a survey by Hirst, Koonce and Venkataraman (2008), who write �much

of the prior research ignores the iterative nature of management earnings forecasts."�
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above, and Pae (2005). The latter considers a single period setting in which the agent can learn up

to two signals. We add to his model dynamic considerations, which are again crucial for creating

the option value to wait for a better signal.

2 Model setup

We study a two period setting, t 2 f0; 1g, in which an agent (the manager) may receive private

signals about his �rm�s value (his type). The value of the �rm, V , is the realization of a normally

distributed random variable and without loss of generality we assume that ~V � N(0; �2). The

manager might obtain up to two private signals of the form ~Si = ~V + ~"i where "1 and "2 are

independent of ~V and of each other and "1; "2 � N(0; �2"). The probability of obtaining a signal ~Si

at a given period (given that the signal has not yet been received) is independent of whether the

other signal was observed and the realizations of signals. We denote this probability by p. In each

period, the manager can publicly disclose all or part of the signals he obtained. We follow Dye (1985)

and assume that an uninformed manager can not credibly convey the fact that he did not obtain

a signal. Any disclosure is assumed to be truthful and does not impose direct cost on the manager

or the �rm. The manager�s objective is to maximize a weighted average of the �rm�s price over the

two periods. For simplicity and without loss of generality we assume that the manager weighs the

prices equally across the two periods. In each period, based on the publicly available information

investors set the �rm�s price to equal its expected value. The publicly available information at time

t includes the information that was disclosed and when it was disclosed. We further denote by x

the �rst signal that is disclosed, the time at which x is being disclosed we denote by tx and the

time at which the signal x was observed by the manager we denote by �x. We denote the other

signal that the manager might have received by y and the time at which it was obtained by the

manager by �y. We let

h (x; tx; t)

denote investors� expectation at time t of the signal y conditional on the fact that only x was

disclosed until period t and it was disclosed at time tx. The structure of the game and all parameters

of the model are common knowledge.

From the properties of the joint normal distribution it follows that the conditional expectation
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of the �rm value given that the manager obtained a single signal is given by:

E( ~V jS1 = s1) = �1s1

where �1 = �2

�2+�2"
. Note that also E( ~S2jS1 = s1) = �1s1.

Following disclosure of two signals the conditional expectation of the �rm value is given by

E( ~V jS1 = s1; S2 = s2) = �2(s1 + s2)

where �2 = �2

2�2+�2"
. Finally, the expectation of the �rm value given disclosure of a single signal, x,

at t = tx as calculated at the end of period t is given by

�2(x+ h (x; tx; t))

Note that �2 < �1 < 2�2 < 1 and �2(1 + �1) = �1:

Figure 1 summarizes the sequence of events in the model.

Each signal is learnt with probability p.
The manager decides what subsets of
the signals that he learnt to disclose. At
the end of the period investors set the
stock price equal to their expectation of
the firm’s value.

Each signal that has not yet been received at
t=0 is obtained by the manager with
probability p. The manager may disclose a
subset of the signals he has received but not
yet disclosed at t=0. At the end of the period
investors set the stock price equal to their
expectation of the firm’s value.

t=0 t=1

Figure 1: Timeline

3 Properties of any Equilibrium

Multiple equilibria are common in signaling models. In section 4, we identify and analyze a speci�c

class of equilibria based on threshold strategies. In this section, we show that our main result, that

the inference about the �rm�s value at a given point in time depends not only on what information

has been disclosed so far but also on when it was disclosed, holds in any equilibrium. In particular,

we show that the price at the end of the second period is higher when the manager disclosed a
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single signal, x, at t = 1 and none at t = 0 than when the manager discloses a single signal, x, at

t = 0 and non at t = 1.

At t = 1 the number of signals that were disclosed can be zero, one or two. To demonstrate

our main result, the only relevant case is when exactly one signal is being disclosed. If both signals

were disclosed there is no information asymmetry, so the price is independent of when the signals

were disclosed. If no signal was disclosed we cannot condition on the time of disclosure.

We consider two possible equilibrium scenarios. In the �rst scenario, a signal x is disclosed

at t = 0 and in the other it is disclosed at t = 1. In both cases, this is the only signal that the

agent discloses. At t = 1, the market sets a price of �2(x + h(x; 0; 1)) in the �rst scenario and

�2(x + h(x; 1; 1)) in the second one. We argue that h(x; 1; 1) � h(x; 0; 1) so that later disclosure

receives a better interpretation. That is, investors�valuation of the �rm is higher if the manager

discloses x at t = 1 rather than at t = 0:

Before proving this claim, we �rst note that in both scenarios (given disclosure of x at either

t = 0 or t = 1) the market cannot perfectly tell whether the agent learnt a second signal y or

not. To see why, suppose instead that an agent who only knows x never discloses it. Following

the disclosure of only x it would become commonly known that the agent hides the second signal.

The usual unraveling argument then implies that in equilibrium the agent would disclose also the

second signal, y. This precludes a disclosure of a single signal being part of the equilibrium. If

instead only an agent who learnt a single signal discloses it, it becomes commonly known that the

agent does not know the other signal. In this case, agents with a low signal y would reveal x but

not y - contrary to the assumption.

We refer to agents who by the end of t = 1 know also the second signal y as �informed�and

those who have not learned y as �uninformed�. Formally, the set of informed is given by f�y = 0; 1g

and those who are uninformed by f�y > 1g. It is useful to de�ne a subset of informed agents which

we refer to as �potential disclosers�. These are informed agents who have not disclosed y at t = 0

and therefore may potentially disclose y at t = 1. In some cases we need also to exclude types that

would have disclosed y rather than x. This occurs for example, if x is disclosed at t = 0, when

we can rule out the possibility that the agent knew both signals at t = 0 and y 2 D0 (yjx), where

D0 (yjx) is the set of signals y that would have been disclosed in t = 0 if the agent learned both y

and x at t = 0 (this includes y that would have been disclosed either with or without disclosure of

x). We denote the set of uniformed agents at t = 1 by A, and the set of potential disclosers by B.
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Speci�cally, we let B0 denote the set of potential disclosers at t = 1 when x is disclosed at t = 0

and B1 the set of potential disclosers for the scenario in which x is disclosed at t = 1.

B0 = fInformed agents who have disclosed only x at t = 0g

n
�
y 2 D0 (yjx) ; �y = 0; �x = 0

	
B1 = fInformed agents who have disclosed only x at t = 1g

n
�
fy > x; �y = 1g [

�
y 2 D0 (yjx) ; �y = 0; �x = 0

	
[
�
y 2 D0 (y) ; �y = 0; �x = 1

		
where D0 (y) is the set of agents with �y = 0; �x = 1 that would have disclosed their signal y at

t = 0.

At t = 1, given that they have disclosed x, potential disclosers are myopic in deciding whether

to disclose the second signal, y. They will disclose y if it is higher than the market perception

about y, which is given by h (x; �; 1). The myopic disclosure policy can be characterized by a set

and a distribution over that set, which we denote by SfA;B. Formally, for arbitrary sets A and B,

with distributions fA and fB respectively, we de�ne SfA;B as:

SfA;B = A [ fB \ f(y; �y) : y � Ey(S
f
A;B)g: (1)

Or equivalently:

SfA;B = A [Bnf(y; �y) 2 B : y > Ey(S
f
A;B)g:

where Ey(S
f
A;B) is the expectation of y when calculated over the union of the set A and the set

fB \ f(y; �y) : y � Ey(SfA;B)g such that the distribution f assigns a weight to each of the sets and

its corresponding distribution according to the relative likelihood of y belonging to each set. To

gain better intuition for the de�nition of SfA;B consider a Dye (1985) setting in which an agent,

whose type y is distributed according to a standard normal distribution, may learn his type with

probability p. When learnings his type, the agent needs to decide whether to disclose it. The agent�s

objective is to maximize investors�beliefs about his type. Both the set of uninformed agents, ADye,

and the set of potential disclosers (informed agents), BDye, consists of all the real numbers where

the distribution over both sets is standard normal. The set fBDye \ f(y; �y) : y � Ey(SfA;B)g is all

values of y such that y < Ey
�
SfA;B

�
. Denoting by � (�) and � (�) respectively the pdf and cdf of

standard normal distribution, we have Ey
�
SfA;B

�
=

(1�p)
R1
�1 z�(z)dz+p

R Ey(SfA;B)
�1 z�(z)dz

(1�p)+p�
�
Ey
�
SfA;B

�� . In such a

Dye (1985) setting, investors�beliefs given no disclosure, Ey
�
SfA;B

�
, equal the disclosure threshold

of an informed agent.
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The de�nition of SfA;B is an implicit de�nition that relies on the existence and uniqueness of a

�xed point. We verify this in the following Lemma.

Lemma 1 Equation 1 has a unique solution SfA;B.

Proof. See appendix

Using the de�nitions of SfA;B and the sets B0 and B1, we can express h(x; 0; 1) and h(x; 1; 1) in

terms of SfA;B0 and S
f
A;B1

as follows:

h(x; 0; 1) = E(yjy 2 SfA;B0) � Ey(S
f
A;B0

)

h(x; 1; 1) = E(yjy 2 SfA;B1) � Ey(S
f
A;B1

)
(2)

In the following, to simplify notation and readability, we will abuse the notation and omit the

reference to the distribution of the sets A; B and SfA;B1 . That is, for any two sets A, B and their

respective distributions we will denote SfA;B by SA;B and the expectation of the union of these sets

given the distributions over the sets by Ey(A [B).

A key argument that we will use is the following extension of the minimum principle that

appeared �rst in Acharya, DeMarzo and Kremer (2011):4

Lemma 2 Generalized Minimum Principle

For any two sets A and B (and their respective distributions) we have:

(i) Ey(A [B) � Ey(SA;B)5

(ii) B0 � B" ) Ey(SA; B") � Ey(SA; B0)

(iii) Suppose that B0 � B" and every y 2 B0nB" satis�es y > Ey(SA; B"). Then SA; B" = SA; B0

While we use this Lemma in a speci�c context it is important to note that the above Lemma

holds for arbitrary sets A and B and distributions over A and B. We provide a formal proof in the

appendix but the logic can be demonstrated through three simple examples:

Examples: In all three examples, we consider two disjoint sets. Each element in a set is multi-

dimensional, but we are interested only in one dimension of the element - call it the value of y.

Suppose that for set A y is uniformly distributed on [0; 1], i.e., yA � U [0; 1].

1. Suppose that B is such that yB � U [0; 1]. In this case Ey(A[B) = 0:5 while Ey(SA;B) < 0:5

because SA;B is de�ned as A [B excluding some high types in B.

4They established point (i) of the Lemma below.
5Ey(A [B) = Ey(SA;B) if and only if Ey(SA;B) is greater than the highest element in B.
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2. Suppose that B00 = ; and B is as de�ned in example 1 above. In this case we have SA;B00 = A

and Ey(SA;B00) = 0:5 > Ey(SA;B)

3. Suppose that B00 = ; but B0 is a unit mass distributed uniformly on [0:5; 1]. In this case we

have SA;B" = SA;B0 = A.

Based on Lemma 2, we argue that the interpretation of a disclosed signal when there was no

new disclosure deteriorates over time. The following Lemma formalizes it.

Lemma 3 h (x; 0; 1) � h (x; 0; 0).

Proof Consistent with our notation earlier, let the set A denote the set of uniformed agents

who disclosed x at t = 0 and did not learn y by the end of t = 1. Let B0 denote the set of agents

who disclosed x at t = 0 and become informed of y by the end of t = 1. The claim follows from

Lemma 2 as h(x; 0; 0) = Ey(A [B0) and h(x; 0; 1) = Ey(SA;B0). QED

The above Lemma implies the following Corollary.

Corollary 1 A manager that has disclosed x at t = 0 is myopic with respect to the decision to

release y. That is, conditional on disclosing x at t = 0 the manager reveals also y at t = 0 if and

only if y > h(x; 0; 0).

We now turn to our main result.

Theorem 1 h (x; 1; 1) � h (x; 0; 1)

We provide the proof of the Theorem in the Appendix but describe here our strategy to prove

the Theorem. We prove this by way of contradiction. A simple way would have been to argue that

if h (x; 0; 1) > h (x; 1; 1) then B0 � B1 which based on equation (2) and part (ii) of Lemma 2 leads

to a contradiction. Since we do not rely on the equilibrium structure (e.g., a threshold strategy) we

use a slightly more involved argument. We assume by contradiction that h (x; 0; 1) > h (x; 1; 1) and

�nd a set bB0 � B1 such that also bB0 � B0 and 8y 2 bB0nB0 we have y > Ey(SA;B0) = h(x; 0; 1).
Then, based on part (iii) of Lemma 2 we obtain a contradiction.
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4 A Threshold Equilibrium

The objective of this section is to demonstrate the existence of a threshold equilibrium under

suitable conditions. In a static model with a single signal such a result would be trivial since the

payo¤ upon disclosure is increasing in the manager�s type while the payo¤ upon non disclosure

is �xed. Hence, if a given type chooses to disclose his type so would a higher type. This simple

argument is not applicable in our dynamic setting. The reason is that an agent�s expected payo¤

upon non-disclosure in the �rst period also increases in his type. Moreover, the relation between

the expected payo¤ of an agent that discloses a signal in the �rst period and his type is not straight

forward. This complicates the analysis and requires few interim steps before establishing existence

of a threshold equilibrium. Our proof strategy is to �rst derive prices that would occur if the

market believes that the agent follows a threshold strategy. For these prices, we then show that

under suitable conditions the agent�s expected payo¤ upon disclosure in t = 0 is increasing faster

in his type, x, as compared to his expected payo¤ upon non-disclosure in t = 0. Therefore, given

these prices the agent�s best response would indeed be to follow a threshold strategy.

We de�ne a threshold strategy in our dynamic setting with two signals in the following way.

De�nition 1 Denote the information set of an agent by fs01; s2g where si 2 fR; ;g and si = ;

implies that the agent has not learnt this signal yet. We say that the equilibrium is a threshold

equilibrium if an agent with information set fs1; s2g who discloses s1 at t 2 f0; 1g discloses any

s01 > s1 when his information set is fs01; s2g.6

Since the equilibrium reporting strategy in t = 1 is always a threshold strategy as de�ned

above, we will focus on an informed agent�s disclosure decision at t = 0. We �rst assume (and later

con�rm) that there exists a threshold equilibrium in which an agent that learns a signal x at t = 0

discloses it at t = 0 if and only if x > x�. It proves convenient to partition the set of agents that

learn at t = 0 a signal x � x� into the following three subsets: (i) agents that learn only x at t = 0,

(ii) agents that learn both signals at t = 0 but the signal y (where y < x) is su¢ ciently high such

that if the agent doesn�t disclose y at t = 0 he will disclose y at t = 1; and (iii) agents that learn

both signals at t = 0 but the signal y is su¢ ciently low such that if the agent doesn�t disclose y at

t = 0 he will not disclose y at t = 1.

6While we do not know whether a non-threshold equilibrium exists, one can show that it is always the case that
the equilibrium reporting strategy of the second period is a threshold strategy as de�ned above.
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We start by discussing agents in subset (i). If such an agent discloses x at t = 0 he will disclose

y at t = 1 only if y � h (x; 0; 1) (in case he learns y). On the other hand, if the agent does not

disclose at t = 0 he bene�ts from two �real options.�The �rst option value will be realized if he

learns at t = 1 a su¢ ciently high value of y such that at t = 1 he will disclose only y and conceal

x (for y > yH (x)). This increases his payo¤ at t = 1 relative to the case in which he discloses x

at t = 0. The second option value will be realized if the manager does not learn y at t = 1 or if

he learns a su¢ ciently low y (y < h (x; 1; 1)) such that he does not disclose it. In this case, since

h (x; 1; 1) > h (x; 0; 1) (see Theorem 1) the manager�s payo¤ at t = 1 is higher than his payo¤would

have been had he disclosed x at t = 0. In order for a partially informed agent to disclose x at t = 0

the expected value of his two real options should be (weakly) lower than the decrease in the price at

t = 0 relative to the price given disclosure of x at t = 0. This implies that h (0) < �2 (x+ h (x; 0; 0)).

Formally, if the agent decides to disclose x at t = 0 his expected payo¤ is

Et=0 (U j�x = 0; �y 6= 0; tx = 0; x) = �2 (x+ h (x; 0; 0)) + Ey [max f�2 (x+ h (x; 0; 1)) ; �2 (x+ y)g jx]

= �2 (x+ h (x; 0; 0)) + (1� p)�2 (x+ h (x; 0; 1))

+ p�2

" 
x+

Z h(x;0;1)

�1
h (x; 0; 1) f (yjx) dy

!
+

Z 1

h(x;0;1)
(x+ y) f (yjx) dy

#
:

If he withholds information at t = 0 his expected payo¤ is7

Et=0 (U j�x = 0; �y 6= 0; tx 6= 0; x) = h (0) + Ey [max f�2 (x+ h (x; 1; 1)) ; �2 (x+ y) ; �2 (y + h (y; 1; 1))g jx]

= h (0) + (1� p)�2 (x+ h (x; 1; 1))

+ p�2

"Z h(x;1;1)

�1
(x+ h (x; 1; 1) f (yjx) dy) +

Z yH(x)

h(x;1;1)
(x+ y) f (yjx) dy +

Z 1

yH(x)
(y + h (y; 1; 1) f (yjx) dy)

#
:

Such an agent prefers to disclose x at t = 0 over not disclosing it if

Et=0 (U j�x = 0; �y 6= 0; tx = 0; x) � Et=0 (U j�x = 0; �y 6= 0; tx 6= 0; x) : (3)

Next, we consider agents in subset (ii). Such agents, whose second signal y > h (x; 1; 1), will

disclose y at t = 1 regardless of whether they did or did not disclose x at t = 0. Therefore, such

agents will not bene�t from any of the real options that agents in subset (i) might bene�t.

Finally, agents in subset (iii), whose second signal y < h (x; 1; 1), will not disclose y at t = 1.

Such agents will always bene�t at t = 1 from the fact that h (x; 1; 1) > h (x; 0; 1). So they trade o¤

7The agent considers Ey [max f�2 (x+ h (x; 1; 1)) ; �2 (x+ y) ; �2 (y + h (y; 1; 1)) ; h (1)g jx] where h (1) is the price
at t = 1 when the agent hasn�t made any disclosure. However, for any x > x� an agent that did not disclose at t = 0
is better o¤ disclosing x at t = 1 over not disclosing at all. Therefor, we omit h (1) in the agent�s expected utility.
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higher price at t = 0 against lower price at t = 1. Such an agent will disclose x at t = 0 if

�2 (x+ h (x; 0; 0)) + �2 (x+ h (x; 0; 1)) � h (0) + �2 (x+ h (x; 1; 1)) : (4)

Later in the paper, we demonstrate some characteristics of prices that always hold under a

threshold disclosure strategy. As mentioned at the beginning of this section, the major challenge in

proving existence of a threshold equilibrium is to show that for an agent that learns only x at t = 0

the expected payo¤ from disclosing x at t = 0 is increasing in x faster than his expected payo¤

from not disclosing x at t = 0. That is showing that LHS�RHS of inequality 3 is increasing in x.

It turns out that given the above mentioned characteristics of prices that always hold, a su¢ cient

condition for LHS � RHS of inequality 3 to increase in x is that LHS � RHS of inequality 4 is

increasing in x, i.e., that

@

@x
h (x; 0; 0) +

@

@x
h (x; 0; 1) � @

@x
h (x; 1; 1)� 1:

Since there are few steps we need to take prior to proving existence of a threshold equilibrium,

we outline the structure of the remainder of this section. In order to characterize the prevailing

prices in our dynamic setting if the market believes that the agent follows a threshold strategy it is

useful to study a variant of a Dye (1985) setting. In Section 4.1, we study a variant of Dye (1985) in

which the disclosure threshold of the agent is determined exogenously and is stochastic. Equipped

with the insights from the variant static model, we characterize in section 4.2 the prices that would

occur if the market believes that the agent follows a threshold strategy. The characteristics of the

prices derived in section 4.2 set the ground for Section 4.3 where we establish the existence of a

threshold equilibrium under suitable conditions. Finally, in Section 4.4 we further characterize the

equilibrium.

4.1 A Variant of a Static Model

We brie�y present and discuss few properties of a static voluntary disclosure setting similar to Dye

(1985) and Jung and Kwon (1988). These properties will be later used in characterizing prices in

the dynamic setting and in proving existence of a threshold equilibrium. Assume that an agent�s

type (his �rm�s value) is the realization of ~s � N(�; �2) and with probability p the agent learns

this value. If the agent learns the realization of ~s he may choose to disclose it. We are interested

13



in investors�beliefs about the �rm value given no disclosure by the agent. In particular, we assume

that the agent�s strategy is to disclose s if and only if s � z, where z is some exogenously determined

disclosure threshold. Note that unlike Dye (1985) and Jung and Kwon (1988), we are not looking at

an equilibrium strategy, but rather on some exogenously determined disclosure threshold strategy.

We will refer to this setting as a Dye setting with exogenous disclosure threshold. Let�s denote

the investors� expectation of the �rm value given no disclosure and given the agent�s disclosure

threshold is z by hstat (�; z). It is easy to see that:

1. hstat (�+�; z +�) = hstat (�; z) + � for any constant �; this implies that hstat1 (�; z) +

hstat2 (�; z) = 1:

2. The minimum principle we discussed in section 3 implies that hstat (�; z) satis�es z� =

argminz h
stat (�; z)() z� = hstat (�; z�). This implies that the equilibrium disclosure thresh-

old in standard Dye (1985) and Jung and Kwon (1988) minimizes hstat (�; z).

Figure 2 plots hstat (�; z) for standard normal distribution with p = 0:5.

3 2 1 1 2 3

0.3

0.2

0.1

0.1

z

h(z)

Figure 2: Price Given No-Disclosure in a Dye Setting with Exogenous Disclosure Threshold z

Note that for all z < hstat (�; z) (z > hstat (�; z)) the price given no disclosure, hstat (�; z), is

decreasing (increasing) in z. Further analysis shows that for p < 0:95 the slope of hstat (�; z) with

respect to z is always higher than �1. We will later use this lower bound of the slope.

For the analysis of our dynamic model it will prove useful to consider a variant of this model.

The variant is still a static model but the threshold for disclosure depends on � and the agent follows

a random disclosure policy. In particular, with probability �i, i 2 f1; ::;Kg ; where
PK
i=1 �i = p, the

agent discloses only if his type is above zi (�). The reasons we consider a disclosure threshold that

depends on � is that in our dynamic setting investors update their beliefs about the undisclosed
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signal based on the value of the disclosed signal. The reason we consider a random disclosure policy

is as follows. In our dynamic setting, when by t = 1 the agent disclosed a single signal investors

do not know whether the agent learnt a second signal and if so, whether he learnt it at t = 0 or

at t = 1. Since the agent follows di¤erent disclosure thresholds at the two possible dates investors�

beliefs about the agent�s disclosure threshold are stochastic.

We next analyze some properties of the static setting with random threshold disclosure policy.

Let us denote by hstat (�; fzi(�)g) the conditional expectation of the type given the disclosure

thresholds, zi (�).

Lemma 4 Suppose that: (i) for all i zi (�) � hstat (�; fzi(�)g) ; (ii) z0i (�) 2 [0; c] and (iii) p � 0:95.

Then d
d�h

stat (�; fzi(�)g) 2 (1� c; 2)

The intuition for the random case, in which K > 1, is a little complicated and therefore we defer

it to the Appendix where we formally prove the Lemma. In order to provide the basic intuition for

the result, we analyze the particular case in which the disclosure strategy is non-random, i.e., K = 1.

We start by providing the two simplest examples, for the cases where z0 (�) = 1 and z0i (�) = 0.

These examples are useful in demonstrating the basic logic and how it can be analyzed using Figure

2. These two examples also provide most of the intuition for the case with no restriction on z0i (�),

which is presented in example 3.

Examples:

1. Assume that z0 (�) = 1 (and K = 1). From point 1 above we know that d
d�h

stat (�; z(�)) =

@
@�h

stat (�; fz(�)g)+ z0 (�) � @
@zh

stat (�; fz(�)g) = 1. The intuition can be demonstrated using

�gure 2. A unit increase in � (keeping zi(�) constant) shifts the entire graph both upwards

and right by one unit. However, since also zi(�) increases by a unit, the overall e¤ect is an

increase in hstat (�; fz(�)g) by one unit.

2. Assume that z0i (�) = 0 and the agent discloses his signal if it is higher than z
�, i.e., zi (�) =

z�. From point 1 above we know that @
@�h

stat (�; z�) + @
@z�h

stat (�; z�) = 1 and therefore

@
@�h

stat (�; z�) = 1 � @
@z�h

stat (�; z�). We also know that since z� < hstat (�; fz�g) we have
@
@z�h

stat (�; z�) 2 (�1; 0). Hence, we conclude that @
@�h

stat (�; z�) 2 (1; 2). The intuition can

be demonstrated using �gure 2. The e¤ect of a unit increase in � can be presented as a sum of

two e¤ects: (i) a unit increase in the disclosure threshold z as well as a shift of the entire graph
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both to the right and upwards by one unit and (ii) a unit decrease in the disclosure threshold

z (as z0i (�) = 0). The �rst e¤ect is similar to the �rst example we had and therefore increases

hstat (�; fzi(�)g) by one. The second e¤ect increases hstat (�; fzi(�)g) by the absolute value of

the slope of hstat (�; fzi(�)g). So, in summary we have @
@�h

stat (�; z�) = 1 � @
@z�h

stat (�; z�).

Moreover, @
@�h

stat (�; z�) 2 [1; 2].

3. The general case for K = 1 . Assume that z0 (�) = c; which is a more general case

that generalizes both of the examples above. Following a similar logic, we conclude that

d
d�h

stat (�; fz(�)g) = @
@�h

stat (�; z(�)) + c � @
@zh

stat (�; z(�)) = 1 + (c� 1) @@zh
stat (�; z(�)).8

4.2 Prices Given a Threshold Disclosure Strategy

In this section, we assume the existence of a threshold equilibrium in which a manager who learns

only x at t = 0 discloses it if and only if x � x�. We will derive some characteristics of prices that

are consistent with such disclosure strategy.

Recall two observations that we discussed earlier. First, at t = 1, the agent behaves myopically

and his strategy at t = 1 follows a threshold strategy. Second, for any x � x� the price at t = 0 given

no disclosure, h (0), is lower than the price given disclosure of x. That is h (0) < �2 (x+ h (x; 0; 0)).

Another intuitive observation is that an agent who learns both signals at t = 0 (�x = �y = 0),

where y < x; and discloses x at t = 0, behaves myopically with respect to the disclosure of his signal

y. In particular, such a type discloses also y at t = 0 if and only if y � h (x; 0; 0). This has been

established in section 3, where we have also shown that for y 2 (h (x; 0; 1) ; h (x; 0; 0)) the agent

discloses y at t = 1 and if y < h (x; 0; 1) he never discloses y. That is, conditional on disclosing x

at t = 0 that agent is myopic in both periods with respect to the disclosure of y.

Next, we characterize the slopes of h (x; 0; 0) ; h (x; 1; 1) and h (x; 0; 1). This will be useful later,

when we show that the agent�s expected payo¤ from disclosing his signal at t = 0 is increasing in

his signal faster than his expected payo¤ from concealing his signal at t = 0.

Claim 1 Suppose there exists a threshold equilibrium in which and agent that learns only x at t = 0

discloses it if and only if x � x�. Then, the following are upper and lower bounds for the slopes of
8Recall that @

@�
hstat (�; z(�)) = 1� @

@z
hstat (�; z(�)).
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h (x; 0; 0) ; h (x; 1; 1) and h (x; 0; 1).

@

@x
h (x; 0; 0)

�
= �1 if h (x; 0; 0) < x

2 (2�1 � 1; �1) if h (x; 0; 0) > x (if such case exists)

@

@x
h (x; 1; 1)

�
= �1 if h (x; 1; 1) < x� (if such case exists)

2 (2�1 � 1; 2�1) if h (x; 1; 1) > x�

@

@x
h (x; 0; 1)

�
= �1 if h (x; 0; 1) < x

2 (2�1 � 1; �1) if h (x; 0; 1) > x (if such case exists)

Proof of Claim 1

We start by analyzing h (x; 0; 0).

As we showed in Section 3, for any x that is disclosed at t = 0 such that h (x; 0; 0) < x (the

non-binding case)9, if �y = 0 the agent is myopic with respect to the disclosure of y and discloses

it whenever y � h (x; 0; 0). This makes the analysis of the e¤ect of an increase in x on h (x; 0; 0)

qualitatively similar to the analysis of an increase in the mean of the distribution in a standard Dye

(1985) and Jung and Kwon (1988) equilibrium, in which the increase in both equilibrium beliefs

and disclosure threshold is identical to the increase in the mean. This case is captured by example

1 of Section 4.1. The quantitative di¤erence in our dynamic setting is that a unit increase in x

increases investors�beliefs about y by �1 (rather than by 1) and therefore also increases the beliefs

about y and the disclosure threshold by �1. As a result, in our dynamic setting for h (x; 0; 0) < x

we have h0 (x; 0; 0) = �1.10

In the binding case, i.e., for all x such that h (x; 0; 0) > x (if such x > x� exists) we know that

if �y = 0 then y < x. This case is captured by example 3 of Section 4.1. In particular, an increase

in x increases the beliefs about y at a rate of �1 while the increase in the constraint/disclosure

threshold (y < x) is at a rate of 1. Therefore, this is a particular case of example 3 of Section 4.1 in

which we increase the mean by �1 and z0 (�) = c = 1
�1
. From example 3 we know that an increase

in the beliefs about y given a unit increase in x (which is equivalent to an increase of �1 in � in

example 3) is given by �1
�
1 + (c� 1) @@zh

stat (�; z(�))
�
. Substituting c = 1

�1
and rearranging terms

yields

h0 (x; 0; 0) = �1 + (1� �1)
@

@z
hstat (�; z(�)) :

Since @
@zh

stat (�; z(�)) 2 (�1; 0) we have @
@xh (x; 0; 0) 2 [2�1 � 1; �1].

9We use the term non-binding to indicate that the constraint y < x is not binding. The reason is that since
h (x; 0; 0) < x the constraint y < h (x; 0; 0) also implies that y < x.
10Since both the beliefs about y and the disclosure threshold increase at the same rate, the probability that the

agent learnt y at t = 0 but did not disclose it is independent of x.

17



Since the analysis of how h (x; 1; 1) and h (x; 0; 1)vary with x is more involved and more technical

we defer it to the Appendix, where we prove the remainder of Claim 1. The reason these cases are

more complicated is that when pricing the �rm at t = 1 investors do not know whether the agent

learnt y at t = 0 or at t = 1 (in case the agent did in fact learn y). Investors�inference about y

depends on when the agent learnt it, and therefore the analysis of h (x; 1; 1) and h (x; 0; 1) requires

analysis of a stochastic disclosure threshold. Lemma 4 will be useful in conducting this analysis.

Given the characterization of a threshold equilibrium that we have developed so far, we are now

ready to establish the existence of a threshold equilibrium.

4.3 Existence of a threshold equilibrium

Proposition 1 For �1 > 0:5 and p < 0:95 there exists a threshold equilibrium in which an agent

that learns at t = 0 only one signal, x, discloses it at t = 0 if and only if x � x�. If the agent

learns two signals at t = 0 and one of them is greater than x� he makes a disclosure at t = 0.

In particular, he may choose to disclose at t = 0 both signals or just the higher one. Disclosing a

single signal x < x� at t = 0 is not part of the equilibrium disclosure strategy.11

Proof. The sketch of the proof is as follows. We show that if the highest signal learnt by an agent

at t = 0 is su¢ ciently high he will disclose it at t = 0 (and if he learnt a second signal he sometimes

discloses it as well). If his highest signal is su¢ ciently low the agent will not make a disclosure at

t = 0. Finally, using the properties of the slopes of the various prices that we derived, we show

that the di¤erence between the agent�s expected payo¤ at t = 0 from disclosing a signal and his

expected payo¤ at t = 0 from not disclosing the signal is increasing in the signal. This is formalized

in the following lemma.

Lemma 5 (a) For su¢ ciently high (low) realizations of x; an agent that learns a single signal, x,

at t = 0 (�x = 0; �y 6= 0) discloses (does not disclose) x at t = 0.

(b) For su¢ ciently high (low) realizations of x; an agent that learns both signals at t = 0 (�x =

�y = 0) and does not disclose y at t = 0 discloses (does not disclose) x at t = 0.

(c) On the equilibrium path, the di¤erence between the agent�s expected payo¤ if he discloses x at

t = 0 and if he does not disclose at t = 0 is increasing in x.

11We believe that the threshold equilibrium exists for a wider set of (all) parameters, however, for tractability
reasons we restrict the set of parameters for which we show the existence of a threshold equilibrium.
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The proof of the Lemma is in the appendix.

4.4 Further characterization of the equilibrium

While we have already established the existence of a threshold equilibrium under suitable conditions,

we have not yet discussed how x�; the disclosure threshold at t = 0 for an agent that learnt a single

signal, is determined. We complete this analysis below.

In most signaling models, and in particular voluntary disclosure models, the agent�s private

information consists of a single signal. In such settings, the disclosure threshold equals the signal

for which the manager is indi¤erent between disclosing and not disclosing his signal. In our richer

setting, the di¤erence between types is multidimensional, and therefore the simple indi¤erence

condition used in the standard models does not apply. We next discuss how the disclosure threshold

is determined.

At the beginning of Section 4, when discussing the manager�s trade-o¤s we partitioned the set

of agents that make a disclosure at t = 0 into subsets (i)� (iii). We will use the same partition in

order to describe how the threshold for disclosure of a single signal at t = 0 is determined.

For a given x if an agent in subset (iii) prefers to disclose x at t = 0 then it is easy to see that

every agent in subset (ii) strictly prefers to disclose x at t = 0. It is not easy, however, to determine

whether the fact that an agent in subset (iii) prefers to disclose x at t = 0 over not disclosing it

implies that also a type in subset (i) prefers disclosure of x at t = 0 over non-disclosure at t = 0.

The reason is that a type in subset (i) that does not disclose x at t = 0 may bene�t from either

one of the real options, or none of them, while a type in subset (iii) bene�ts for sure from just one

of the options (the increased price at t = 1).

To obtain an equilibrium with a threshold for disclosure of a single signal at t = 0 we set x�

to equal the lowest value of x for which all agents with x = x� from all subsets (i) � (iii) weakly

prefer to disclose x� at t = 0 over not disclosing at t = 0. Note that the binding constraint might

be either equation (3) or equation (4). Since there are agents that strictly prefer to disclose x� at

t = 0 over not disclosing at t = 0 (these are agents in subset (ii) and agents in either subset (i)

or (iii)) the price given disclosure of x < x� at t = 0, which is o¤ the equilibrium path, must be

su¢ ciently low to prevent the above types from disclosing x < x� at t = 0. This implies that a

necessary condition for a threshold equilibrium in which x� is the lowest value of x for which all
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agents weakly prefer to disclose x� at t = 0 prices must exhibit a discontinuity at x�.
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Appendix

Proof Lemma 1

For a constant c let ScA;B = A[fB\f(y; �y) : y � cg. For c! �1 we have that Ey(ScA;B) > c

and for c!1 we have that Ey(ScA;B) < c so by continuity we can �nd c
� so that Ey(Sc

�
A;B) = c

�.

Now suppose by way of contradiction that there are multiple solutions. Speci�cally, c0 < c" so

that Ey(Sc
0
A;B) = c0; Ey(Sc"A;B) = c". When we compare Sc

0
A;B to S

c"
A;B we note that S

c"
A;B � Sc

0
A;B

and that for (y; �y) 2 Sc"A;BnSc
0
A;B we have y < Ey(S

c"
A;B). This implies that S

c"
A;B can be represented

as a union of Sc
0
A;B where the average c

0 < c" and a set of types that are lower than c". It implies

that Ey(Sc"A;B) < c" and we get a contradiction. QED

Proof of Lemma 2

1. When comparing SA;B to A[B we note that we have excluded above average types for which

y > Ey(SA;B). This results in lower average type.

2. Suppose �rst that there exists (y; �y) 2 SA;B"nSA;B0 . Since B0 � B00 it must be that these

(y; �y) 2 B0 \ B00 . From the de�nition of SA;B since (y; �y) 2 SA;B00 we conclude that

Ey(SA;B00) > y . Since (y; �y) =2 SA;B0 , we conclude that Ey(SA;B0) < y which implies the

claim. Hence, we will assume that SA;B0 � SA;B" and we consider (y; �y) 2 SA;B0nSA;B" ; this

implies y < Ey(SA;B0). Hence, all the elements (y; �y) 2 SA;B0nSA;B" have y that is below the

average in SA;B0 which implies that Ey(SA;B") � Ey(SA;B0) .

3. Consider the set SA;B", and note that it satisfy the de�nition for SA;B0 given in (1) Hence,

the claim follows from uniqueness that was proven in Lemma 1. QED

Proof of Theorem 1

Step 1 If h (x; 0; 1) > h (x; 1; 1) then if x is disclosed at time t = 1 then the agent could not

have known both signals at t = 0.

Proof: We know that x is being disclosed with positive probability if it is the only signal known

at t = 0. Let I denote the payo¤ for such an agent, who learnt only x at t = 0, from disclosing x

at t = 0 and II his payo¤ from not disclosing at t = 0

I = �(x+ h(x; 0; 0)) + Ey [max f�(x+ h(x; 0; 1)); �(x+ y)g]
II = h (0) + Ey [max f�(x+ h(x; 1; 1)); �(y + h(y; 1; 1)); �(x+ y); h (1)g]
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where h (0) and h (1) are the prices at the end of t = 0 and t = 1 respectively, given that no

disclosure was made until time t..

We know that for some x we have that I � II � 0. Consider an agent who knows both signals

at t = 0 and prefers to disclose just x at t = 1. Such an agent knows at time t = 0 that he will

disclose x and not disclose y at t = 1. So, for this to happen it must be that II0 � I0 >= 0 where:

I 0 = �(x+ h(x; 0; 0)) + �(x+ h(x; 0; 1))
II 0 = h (0) + �(x+ h(x; 11))

This leads to contradiction as h(x; 0; 1) > h(x; 1; 1);) I 0 � II 0 > I � II > 0

The above provide us with a simple characterization of B1. Let ND denotes the set of signals

that are not disclosed at t = 0 if this is the only signal the agent knows. We argue that

Step 2 If h (x; 0; 1) > h (x; 1; 1) then B1 = f�y = 0; 1g \ fy < xgnf(y; �y) : �y = 0; y =2 NDg

Proof: If the agent learnt y at t = 0 then based on step1 we conclude that this was the only

signal he knew at the time so it must be that y 2 ND. Since x + h(x; 1; 1) is increasing in x we

conclude that y � x.

Consider the set: bB0 = B0 [ ffy < xg \ f�y = 0; 1gg
Clearly bB0 � B1; bB0 � B0

Step 3 8y 2 bB0nB0; y > h(x; 0; 1)
Proof: We need to consider only agents that become informed. The claim follows from Corol-

lary 1 showing that an informed agent reveals y if and only if y > h(x; 0; 0) � h(x; 0; 1).

From Lemma 2 (iii) we know that S
A bB0 = SAB0 and from Lemma 2 (ii) we know that

Ey (SAB1) � Ey
�
S
A bB0

�
= Ey (SAB0). This contradicts the assumption that h (x; 0; 1) > h (x; 1; 1).

QED

Proof of Lemma 4

By applying Bayes role, hstat (�; fzi(�)g) is given by:

hstat (�; fzi(�)g) =
(1� p)�+

PK
i=0 �i

R zi(�)
�1 y� (yj�) dy

(1� p) +
PK
i=0 �i� (zi (�) j�)

:

Taking the derivative of hstat (�; fzi(�)g) with respect to � and applying some algebraic manip-

ulation yields:

d

d�
hstat (�; fzi(�)g) = 1 +

PK
i=0 �i (z

0
i (�)� 1)� (zi (�) j�)

�
zi (�)� hstat (�; fzi(�)g)

�
(1� p) +

PK
i=0 �i� (zi (�) j�)

:
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We start by proving the supremum of this derivative

Given that z0i (�) � 0 and zi (�) � hstat (�; fzi(�)g) for all i 2 f1; ::;Kg we have

d

d�
hstat (�; fzi(�)g) � 1 +

PK
i=0 �i� (zi (�) j�)

�
zi (�)� hstat (�; fzi(�)g)

�
(1� p) +

PK
i=0 �i� (zi (�) j�)

� 1 + max
zi�h(x)
i2f1;:::Kg

PK
i=0 �i� (zi (�) j�)

�
zi (�)� hstat (�; fzi(�)g)

�
(1� p) +

PK
i=0 �i� (zi (�) j�)

Due to symmetry, for all i 2 f1; ::;Kg the maximum is achieved at zi (�) = z� (�). To see this,

note that the FOC of the maximization with respect to zi (�) is

0 =
�
�0 (zi (�) j�)

�
hstat (�; fzi(�)g)� zi (�)

�
� � (zi (�) j�)

� 
(1� p) +

KX
i=0

�i� (zi (�) j�)
!

�
 

KX
i=1

�i� (zi (�) j�)
�
hstat (�; fzi(�)g)� zi (�)

�!
� (zi (�) j�)

Since �0 (zi (�) j�) = �� (zi (�)� �)� (zi (�) j�) (for some constant � > 0); this simpli�es to

�� (zi (�)� �)
�
hstat (�; fzi(�)g)� zi (�)

�
=

PK
i=0 �i� (zi (�) j�)

�
zi (�)� hstat (�; fzi(�)g)

�
(1� p) +

PK
i=0 �i� (zi (�) j�)

+ 1

In the range zi (�) � hstat (�; fzi(�)g) � �; the LHS is decreasing in zi (�).12 The RHS is the same

for all i. Therefore, the unique solution to this system of FOC is for all zi (�) to be equal (and

note that the maximum is achieved at an interior point since at zi (�) = hstat (�; fzi(�)g) the LHS

is zero and the RHS is positive; and as zi (�) goes to �1 the LHS goes to +1 while the RHS is

bounded). This implies that the example we discussed following the statement of the Lemma also

provides an upper bound. The lower bound can be concluded in a similar way by observing that

if we want to minimize the slope we will again choose the same zi (�) for all i and therefore our

example provides also a lower bound.

QED

Proof of Claim 1

The case of h (x; 0; 0) has been proved right bellow the Claim. We analyze the cases of h (x; 1; 1)

and h (x; 0; 1) bellow.

Next we analyze h (x; 1; 1)

12Since zi (x) � h (x; fzi(�)g) also h (x; fzi(�)g) � E [xjy] = �1x:

23



When an agent discloses x > x� at t = 1 investors know that �x = 1 (otherwise the agent would

have disclosed x at t = 0). Investors�beliefs about the manager�s other signal at t = 1 is set as

a weighted average of three scenarios: �y = 0, �y = 1 and �y > 1. We start by describing the

disclosure thresholds conditional on each of the three scenarios.

(i) If �y > 1 the agent cannot disclose y and therefore the disclosure threshold is not relevant.

In the pricing of the �rm conditional on �y > 1 investors use E (yjx) which equals �1x.

(ii) If �y = 1 investors know that y < h (x; 1; 1) and also that y < x. We need to distinguish

between the binding case and the non-binding case. In the non-binding case, where h (x; 1; 1) � x,

investors know that y < h (x; 1; 1), so conditional on �y = 1investors set their beliefs as if the manger

follows a disclosure threshold of h (x; 1; 1). In the binding case, where h (x; 1; 1) > x, investors know

that y < x, so it is equivalent to a disclosure threshold of x.

(iii) If �y = 0 investors know that y < x� (where x� � x) and also y < h (x; 1; 1). Here again we

should distinguish between a non-binding case in which h (x; 1; 1) < x� (if such case exists) and a

binding case in which h (x; 1; 1) > x�. In the non-binding case the disclosure threshold is h (x; 1; 1).

In the binding case the disclosure threshold is x�, which is independent of x.

The next Lemma provides an upper and lower bound for @
@xh (x; 1; 1). The proof of the Lemma,

which is provided in the appendix, uses the disclosure thresholds for each of the three scenarios

above. This Lemma holds also for h (x; 0; 1).

Lemma 6 For �1 > 0:5 and p < 0:95

@

@x
h (x; 1; 1) 2 (2�1 � 1; 2�1) :

We next show that for the particular case in which h (x; 1; 1) < x� (if such case exists)

h0 (x; 1; 1) = �1.

h (x; 1; 1) is a weighted average of the beliefs about y over the three scenarios �y = 0, �y = 1

and �y > 1. That is, we can write

h (x; 1; 1) = �0h0 + �1h1 + (1� �0 � �1)h2;

where �i = Pr (�y = ijNDy) and hi = E (yj�y = i;NDy) for i = 0; 1 and i = 2 represents the case

of �y > 1. NDy stands for No-Disclosure of y (where x was disclosed at t = 1). Assume that

If h0 (x; 1; 1) = �1 then the for both �y = 0 and for �y = 1 an increase in x increases both the

disclosure threshold h (x; 1; 1) and the expectation of y given no-disclosure, E (yj�y = i;NDy), at a
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rate of �1. Therefore the probabilities �i are independent of x. In addition, for i = 0; 1; 2 we have

h0i = �1. Computing h
0 (x; 1; 1) and incorporating the fact that �0i = 0 for all i yields

h0 (x; 1; 1) = �0h
0
0 + �1h

0
1 + (1� �0 � �1)h02 = �1:

The above only showed consistency of h0 (x; 1; 1) = �1. Following the same line of logic one can

preclude any other value of h0 (x; 1; 1). For brevity, we omit this part of the proof .

Finally, we analyze h (x; 0; 1)

Recall that Lemma 6 applies also to h (x; 0; 1). However, for h (x; 0; 1) we can show tighter

bounds.

We �rst show that for the case where h (x; 0; 1) < x we have h0 (x; 0; 1) = �1.

If h (x; 0; 1) < x (the non-binding case) then when pricing the �rm at t = 1 investors know that

if the agent learnt y (at either t = 0 or t = 1) then y < h (x; 0; 1). If the agent did not learn y

then investors use in their pricing E (yjx) = �1x. So, the beliefs about y is a weighted average of

E (yjy < h (x; 0; 1)) and E (yjx) = �1x. This is similar to a Dye (1985) and Jung and Kwon (1988)

setting and therefore, in equilibrium we have h0 (x; 0; 1) = �1.

Next we show that for x such that h (x; 0; 1) > x (if such case exists) h0 (x; 0; 1) 2 (2�1 � 1; �1).

The argument is similar to the one we made in the proof that h0 (x; 0; 0) 2 (2�1 � 1; �1) for x

such that h (x; 0; 0) > x. First note that for h (x; 0; 1) > x investors�beliefs about y conditional

on that the agent learnt y is independent on whether he learnt y at t = 0 or at t = 1. Moreover,

given that �y � 1 investors know that y < x. So from investors�perspective, it doesn�t matter if

the agent learnt y at t = 0 or at t = 1. Their pricing, h (x; 0; 1), will re�ect a weighted average

between E (yjy < x) and E (yj�y > 1; x) = �1x. From here on the proof is qualitatively the same as

in the proof for h0 (x; 0; 0) 2 (2�1 � 1; �1), where the only quantitative di¤erence is the probability

that the agent learnt y.

QED Claim 1

Proof of Lemma 6

In this proof we use a slightly di¤erent notation, as part of the proof is more general than our

setting.

Suppose that x and y have joint normal distribution and the agent is informed about y with

probability p and uninformed with probability 1 � p. Conditional on being informed the agent�s
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disclosure strategy is assumed to be as follows: with probability �i, i 2 f1; ::;Kg ; he discloses if

his type is above zi (x), where the various zi (x) are determined exogenously such that zi (x) �

h (x; fzi(�)g) for all i (which always holds in our setting). Note that
PK
i=1 �i = p. Let�s denote the

conditional expectation of y given x and given the disclosure thresholds, zi (x), by h (x; fzi(�)g).

By applying Bayes role, h (x) is given by:

h (x; fzi(�)g) =
(1� p)E [yjx] +

PK
i=0 �i

R zi(x)
�1 y� (yjx) dy

(1� p) +
PK
i=0 �i� (zi (x) jx)

:

Taking the derivative of h (x; fzi(�)g) with respect to x and applying some algebraic manipula-

tion (recall that @E[yjx]@x = �1) yields:

h0 (x; fzi(�)g) = �1 +
PK
i=0 �i (z

0
i (x)� �1)� (zi (x) jx) (zi (x)� h (x; fzi(�)g))
(1� p) +

PK
i=0 �i� (zi (x) jx)

: (5)

We start by proving the supremum of h0 (x).

Given that z0i (x) � 0 and (zi (x)� h (x; fzi(�)g)) � 0 for all i 2 f1; ::;Kg we have

h0 (x; fzi(�)g) � �1 +
�1
PK
i=0 �i� (zi (x) jx) (h (x; fzi(�)g)� zi (x))
(1� p) +

PK
i=0 �i� (zi (x) jx)

� �1 + max
zi�h(x)
i2f1;:::Kg

�1
PK
i=0 �i� (zijx) (h (x; fzi(�)g)� zi)
(1� p) +

PK
i=0 �i� (zijx)

Due to symmetry, for all i 2 f1; ::;Kg the maximum is achieved at zi (x) = z� (x). To see this, note

that the FOC of the maximization with respect to zi (x) is

0 =
�
�0 (zi (x) jx) (h (x; fzi(�)g)� zi (x))� � (zi (x) jx)

� 
(1� p) +

KX
i=0

�i� (zi (x) jx)
!

�
 

KX
i=1

�i� (zi (x) jx) (h (x; fzi(�)g)� zi (x))
!
� (zi (x) jx)

Since �0 (zi (x) jx) = �� (zi (x)� �1x)� (zi (x) jx) (for some constant � > 0); this simpli�es to

�� (zi (x)� �1x) (h (x; fzi(�)g)� zi (x)) =
PK
i=0 �i� (zi (x) jx) (h (x; fzi(�)g)� zi (x))

(1� p) +
PK
i=0 �i� (zi (x) jx)

+ 1

In the range zi (x) � h (x; fzi(�)g) � �1x; the LHS is decreasing in zi (x).13 The RHS is the same

for all i. Therefore, the unique solution to this system of FOC is for all zi (x) to be equal (and note

that the maximum is achieved at an interior point since at zi (x) = h (x) the LHS is zero and the

RHS is positive; and as zi (x) goes to �1 the LHS goes to +1 while the RHS is bounded).

13Since zi (x) � h (x; fzi(�)g) also h (x; fzi(�)g) � E [xjy] = �1x:
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Let z� (x) be the maximizing value. Then

h0 (x; fzi(�)g) � �1 +
�1
PK
i=0 �i� (z

� (x) jx) (h (x; fzi(�)g)� z� (x))
(1� p) + p� (z� (x) jx)

= �1 +
p�1� (z

� (x) jx) (h (x; fzi(�)g)� z� (x))
(1� p) + p� (z� (x) jx) :

The right hand side of the above inequality is identical to the slope in a Dye setting with

exogenous disclosure threshold with probability of being uninformed (1� p) and an exogenously

determined determined disclosure threshold of z� (x), where the disclosure threshold does not change

in x. In such a setting, we can think of the e¤ect of a marginal increase in x as the sum of two

e¤ects. The �rst e¤ect is a shift by �1 in both the distribution and the disclosure threshold. This

will increase h (x) by �1. The second e¤ect is a decrease in the disclosure threshold by �1 (as the

disclosure threshold does not change in x). Since z� (x) < �1x we are in the decreasing part of the

beliefs about y given no disclosure (to the left of the minimum beliefs). Therefore, the decrease

in the disclosure threshold increases the beliefs about y by the change in the disclosure threshold

times the slope of the beliefs about y given no disclosure. Since for p < 0:95 the slope of the beliefs

about y given no disclosure is greater than �1, the latter e¤ect increases the beliefs about y by less

than �1. The overall e¤ect is therefore smaller than 2�1.

Next we prove the in�mum of h0 (x).

Equation (5) capture a general case with any number of potential disclosure strategies. In our

particular case K = 1 where i = 0 represents the case of �y = 0 and i = 1 represents the case of

�y = 1. So, in our setting equation (5) can be written as

h0 (x; fzi(�)g) = �1 +
�0 (z

0
0 (x)� �1)� (z0 (x) jx) (z0 (x)� h (x; fzi(�)g))

(1� p) +
P1
i=0 �i� (zi (x) jx)

+
�1 (z

0
1 (x)� �1)� (z1 (x) jx) (z1 (x)� h (x; fzi(�)g))

(1� p) +
PK
i=0 �i� (zi (x) jx)

When calculating h (x; 1; 1) and h (x; 0; 0) in our setting, the disclosure threshold, zi (x), in any

possible scenario (the binding and non-binding case for both �y = 0 and �y = 1) takes one of

the following three values: h (x; �; �) ; x or x�. Note that whenever zi (x) = h (x; fzi(�)g) we have
(z0i(x)��1)�(zi(x)jx)(zi(x)�h(x;fzi(�)g))

(1�p)+
PK
i=0 �i�(zi(x)jx)

= 0.

For the remaining two cases (zi (x) = x and zi (x) = x�), for all i 2 f0; 1g we have z0i (x) � 1

and (zi (x)� h (x; fzi(�)g)) � 0. This implies

h0 (x) � �1 �
(1� �1)

PK
i=0 �i� (zi (x) jx) (h (x; fzi(�)g)� zi (x))
(1� p) +

PK
i=0 �i� (zi (x) jx)

:
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Using the same symmetry argument for the �rst order condition as before, h0 (x; fzi(�)g) is mini-

mized for some zmin (x) and hence

h0 (x; fzi(�)g) � �1 +
p (1� �1)�

�
zmin (x) jx

� �
h (x; fzi(�)g)� zmin (x)

�
(1� p) + p� (zmin (x) jx) :

The right hand side of the above inequality is identical to the slope in a Dye setting with exoge-

nous disclosure threshold in which: the probability of being uninformed is (1� p), the exogenously

determined disclosure threshold is zmin (x) and @
@xz

min (x) = 1. In such a setting, we can think of

the e¤ect of a marginal increase in x as the sum of two e¤ects. The �rst is a shift by �1 in both the

distribution and the disclosure threshold. This will increase h (x) by �1. The second e¤ect is an

increase in the disclosure threshold by (1� �1) (as the disclosure threshold increases by 1). Since

zmin (x) < �1x we are in the decreasing part of the beliefs about y given no disclosure (to the left

of the minimum beliefs). Therefore, the increase in the disclosure threshold decreases the beliefs

about y by the change in the disclosure threshold, (1� �1), times the slope of the beliefs about y

given no disclosure. Since for p < 0:95 the slope of the beliefs about y given no disclosure is greater

than �1 the latter e¤ect decreases the beliefs about y by less than (1� �1). The overall e¤ect is

therefore greater than �1 � (1� �1) = 2�1 � 1.

QED Lemma 6

Proof of Lemma 5

We start by analyzing the partially informed agent, i.e., (�x = 0; �y 6= 0) and then move to the

fully informed agent.

Partially informed agent (�x = 0; �y 6= 0)

First note that for su¢ ciently low realizations of x the agent is always better o¤ not disclosing

it at t = 0, as they can �hide�behind uninformed agents. Next we establish that for su¢ ciently

high realizations of the only private signal that the agent obtains at t = 0 he will disclose it at

t = 0.

Lemma 7 Consider an agent that obtains a single signal x at t = 0. In the threshold equilibrium,

the di¤erence between the agent�s expected payo¤ (as calculated at t = 0) from disclosing his signal

at t = 0 and from not disclosing it at t = 0 is increasing in x. That is,

@

@x
(E (U j�x = 0; �y 6= 0; tx = 0)� E (U j�x = 0; �y 6= 0; tx 6= 0; x � xD)) > 0
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and
@

@x
(E (U j�x = 0; �y 6= 0; tx = 0)� E (U j�x = 0; �y 6= 0; tx 6= 0; x < xD)) > 0:

Proof. We start by showing that the Proposition holds for the case where x � xD (i.e., �2 (x+ h (x; 1; 1)) �

h(1)). For simplicity of disposition, we partition the support of x into two cases: realizations of x

for which �2 (x+ h (x; 1; 1)) � h(1) and for which �2 (x+ h (x; 1; 1)) < h(1).14

Case I - �2 (x+ h (x; 1; 1)) � h(1)

Rewriting E (U j�x = 0; �y 6= 0; tx = 0; x)� E (U j�x = 0; �y 6= 0; tx 6= 0; x � xD) yields

�2 [x+ h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1)]� h (0)

+ p�2

"Z 1

y�(x)
(y � h (x; 0; 1)) f (yjx) dy �

Z 1

y1(x)
(y � h (x; 1; 1)) f (yjx) dy �

Z 1

yH(x)
(h (y; 1; 1)� x) f (yjx) dy

#
The derivative of this expression with respect to x has the same sign as

D = 1 +
@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1)) + p [A+B + C]

where

A =
@

@x

Z 1

y�(x)
(y � h (x; 0; 1)) f (yjx) dy

B = � @

@x

Z 1

y1(x)
(y � h (x; 1; 1)) f (yjx) dy

C = � @

@x

Z 1

yH(x)
(h (y; 1; 1)� x) f (yjx) dy:

To evaluate this derivative we will use the following equations which are easy to obtain:

@

@x
y� (x) =

@

@x
h (x; 0; 1) ;

@

@x
f (yjx) = ��1

@

@y
f (yjx) ;

@

@x
(F (y (x) jx)) = f (y (x) jx)

�
@

@x
y (x)� �1

�
:

Next we analyze the three terms A;B; and C. Note that the derivative with respect to the

limits of integrals is zero for all cases because of the de�nition of the three cuto¤s. Hence we get:

A = �@h (x; 0; 1)
@x

(1� F (y� (x) jx))� �1
Z 1

y�(x)
(y � h (x; 0; 1)) @

@y
f (yjx) dy:

14Note that on the equilibrium path we are always in case I, i.e., �2 (x+ h (x; 1; 1)) � h(1).
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Note that by integrating
R1
y�(x) (y � h (x; 0; 1))

@
@yf (yjx) dy by parts w.r.t. y we got:Z 1

y�(x)
(y � h (x; 0; 1)) @

@y
f (yjx) dy

= � (y� (x)� h (x; 0; 1)) f (y� (x) jx)�
Z 1

y�(x)
f (yjx) dy = � (1� F (y� (x) jx)) :

Plugging back to A we get

A = �
�
@h (x; 0; 1)

@x
� �1

�
(1� F (y� (x) jx)) :

Next, we calculate B:

B =

Z 1

y1(x)

@h (x; 1; 1)

@x
f (yjx) dy + �1

Z 1

y1(x)
(y � h (x; 1; 1)) @

@y
f (yjx) dy

=
@h (x; 1; 1)

@x

�
1� F

�
y1 (x) jx

��
� �1

�
1� F

�
y1 (x) jx

��
=

�
@h (x; 1; 1)

@x
� �1

��
1� F

�
y1 (x) jx

��
Finally, we calculate C:

C =
�
1� F

�
yH (x) jx

��
+ �1

Z 1

yH(x)
(h (y; 1; 1)� x) @

@y
f (yjx) dy

=
�
1� F

�
yH (x) jx

��
� �1

Z 1

yH(x)

@h (y; 1; 1)

@y
f (yjx) dy

Substituting A; B and C back to the whole derivative and re-arranging terms yields:

D = 1 +
@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

� p

24 �@h(x;0;1)@x � �1
�
(1� F (y� (x) jx)) +

�
@h(x;1;1)

@x � �1
� �
1� F

�
y1 (x) jx

��
+�

1� F
�
yH (x) jx

��
� �1

R1
yH(x)

@h(y;1;1)
@y f (yjx) dy

35
= (1� p)

�
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+ p

"
1 + @h(x;0;0)

@x + @h(x;0;1)
@x F (y� (x) jx) + �1 (1� F (y� (x) jx))� @h(x;1;1)

@x F
�
y1 (x) jx

�
��1

�
1� F

�
y1 (x) jx

��
+ 1� F

�
yH (x) jx

�
� �1

R1
yH(x)

@h(y;1;1)
@y f (yjx) dy

#

= (1� p)
�
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+ p

"
1 + @h(x;0;0)

@x + @h(x;0;1)
@x F (y� (x) jx)� F (y� (x) jx)�1 � @h(x;1;1)

@x F
�
y1 (x) jx

�
+F

�
y1 (x) jx

�
�1 +

�
1� F

�
yH (x) jx

��
� �1

R1
yH(x)

@h(y;1;1)
@y f (yjx) dy

#
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Rearranging yields:

D = (1� p)
�
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+ p

�
1 +

@h (x; 0; 0)

@x
+

�
@h (x; 0; 1)

@x
� �1

�
F (y� (x) jx)�

�
@h (x; 1; 1)

@x
� �1

�
F
�
y1 (x) jx

��
+ p�1

Z 1

yH(x)

1

�1
� @h (y; 1; 1)

@y
f (yjx) dy

Since @h(x;0;1)
@x � �1 (see Claim 1) and F

�
y1 (x) jx

�
� F (y� (x) jx) we have

D � (1� p)
�
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+ p

�
1 +

@h (x; 0; 0)

@x
+

�
@h (x; 0; 1)

@x
� @h (x; 1; 1)

@x

�
F
�
y1 (x) jx

��
+ p�1

Z 1

yH(x)

1

�1
� @h (y; 1; 1)

@y
f (yjx) dy

=
�
1� p

�
1� F

�
y1 (x) jx

����
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+

+ p
�
1� F

�
y1 (x) jx

���
1 +

@h (x; 0; 0)

@x

�
+ p�1

Z 1

yH(x)

1

�1
� @h (y; 1; 1)

@y
f (yjx) dy

=
�
1� p

�
1� F

�
y1 (x) jx

����
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+ p

Z 1

y1(x)

�
1 +

@h (x; 0; 0)

@x

�
f (yjx) dy + p

Z 1

yH(x)
1� �1

@h (y; 1; 1)

@y
f (yjx) dy

=
�
1� p

�
1� F

�
y1 (x) jx

����
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+

+ p

Z yH(x)

y1(x)

�
1 +

@h (x; 0; 0)

@x

�
f (yjx) dy + p

Z 1

yH(x)
2 +

@h (x; 0; 0)

@x
� �1

@h (y; 1; 1)

@y
f (yjx) dy

�
�
1� p

�
1� F

�
y1 (x) jx

����
1 +

@

@x
(h (x; 0; 0) + h (x; 0; 1)� h (x; 1; 1))

�
+ p

Z 1

yH(x)
2 +

@h (x; 0; 0)

@x
� �1

@h (y; 1; 1)

@y
f (yjx) dy

So, the following are su¢ cient conditions to prove the Lemma for case I. For all x:

1. @
@xh (x; 0; 0) +

@
@xh (x; 0; 1) �

@
@xh (x; 1; 1)� 1

2. @h(y;1;1)
@y �

�
2 + @h(x;0;0)

@x

�
1
�1
for any y > x

Case II - x < xD (i.e., �2 (x+ h (x; 1; 1)) < h(1))

The analysis of Case I was for generic bounds of the integrals h (x; 0; 1) and yH (x). The

di¤erence between Case I and Case II is that the price given no disclosure of y (if the agent does
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not obtain a signal y or obtains a low realization of y) is h (1) in Case II and �2 (x+ h (x; 1; 1)) in

Case I. This causes the expected payo¤ of the agent in Case II to be less sensitive to x than in Case

I, and therefore @
@x(E (U j�x = 0; �y 6= 0; tx = 0)� E (U j�x = 0; �y 6= 0; tx 6= 0; x � xD)) > 0 implies

that also @
@x(E (U j�x = 0; �y 6= 0; tx = 0)� E (U j�x = 0; �y 6= 0; tx 6= 0; x < xD)) > 0.

To summarize, conditions 1 and 2 above are su¢ cient for both cases and therefore for the

Proposition as a whole.

Claim 1 shows that condition 2 above holds.

So, it is only left to show that condition 1 holds. Since �1 > 1
2 , the LHS of condition 1 is greater

than 2 (2�1 � 1) > 0 and the RHS is less than 2�1 � 1. Therefore the condition holds.15

Fully informed agent (�x = �y = 0)

The only case we still haven�t analyzed is the case of a fully informed agent that learns both

signals at t = 0 (�x = �y = 0) and y is su¢ ciently low such that it will not be disclosed.

The analysis bellow shows that such an agent whose signal x is su¢ ciently high will disclose at

least one signal at t = 0. In particular, for low realizations of y (such that y will not be disclosed

also at t = 1) if x is su¢ ciently high the agent will disclose it at t = 0.

Claim 2 Assume an agent that learnt both signals at t = 0 and the realization of y is such that he

does not disclose y. For su¢ ciently high realizations of x the agent prefers to disclose x at t = 0

over not disclosing x at t = 0.

Proof. We need to show that

�2 [x+ h (x; 0; 0)] + �2 [x+ h (x; 0; 1)] > h (0) + �2 [x+ h (x; 1; 1)] :

Rearranging yields

�2 [x+ h (x; 0; 1)]� h (0) > �2 [h (x; 1; 1)� h (x; 0; 0)] :

Since h (x; 0; 1) is not decreasing for su¢ ciently high x the LHS of the above inequality, �2 [x+ h (x; 0; 1)]�

h (0), goes to in�nity as x goes to in�nity. Therefore, it is su¢ cient to show that h (x; 1; 1) �

h (x; 0; 0) is bounded. Both h (x; 1; 1) and h (x; 0; 0) are lower than �2x. From the minimum prin-

ciple we know that h (x; 0; 0) is higher than the price given no disclosure in a Dye (1985), Jung

15We conjecture that the condition holds also for �1 < 0:5; however, we have not yet been able to prove that.
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and Kwon (1988) setting where y � N (�1x; V ar (yjx)). The price given no disclosure in such a

setting is �1x � Cons, so h (x; 0; 0) > �1x � Cons. Hence, given that h (x; 1; 1) < �1x we have

h (x; 1; 1)� h (x; 0; 0) < Const. QED
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