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Abstract

We examine the importance of asset pricing anomalies for the real economy.

When firms interpret public information in the way it is reflected in market prices,

informational inefficiencies manifesting in financial markets as anomalies can cause

material real inefficiencies. We estimate the joint dynamic distribution of firm

characteristics that have been linked to anomalies and other firm variables, such as

investment, capital, and value added. Based on a model that matches these joint

dynamics, we then evaluate the counterfactual dynamic distribution of these quan-

tities in an informationally efficient economy, and find significant deviations. Our

results suggest that financial- and academic institutions that help reduce and/or

eliminate such anomalies could thus provide large value added to the economy. We

show that informational inefficiencies are particularly destructive for high Tobin’s

q firms, and that the persistence and the amount of mispriced capital are major

determinants of the real economic consequences.
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1. Introduction

In the past few decades a vast literature has developed that attempts to document

and explain the behavior of asset prices both in the cross section and the time series. The

seminal paper on excess volatility (Shiller (1981)) has spurred a literature that attempts

to explain why stock markets are so volatile and whether or not such volatility is excessive

(irrational), relative to the existing models. Similarly, many different “anomalies” have

been uncovered in the cross-section of asset prices, such as the value premium puzzle,

the investment anomaly, the profitability anomaly, and momentum.1 One important

question that follows from these empirical findings is how harmful these patterns in

expected returns would be for the real economy if they indeed reflected informational

inefficiencies. In this paper we ask what the economy-wide real implications are when

firms interpret public information in a way that is consistent with observed market prices,

and financial markets are subject to anomalies.

In the finance literature, mispricings are typically estimated based on realizations of

so-called alphas, that is, deviations of average returns from a benchmark asset-pricing

model. While realizations of alpha indicate that imperfections exist, they can be poor

indicators of the economic importance of anomalies for at least three reasons. First,

they only represent changes of asset mispricings. Mispricing is an inherently dynamic

phenomenon — as alphas are realized over time, firms are only temporarily affected by

distortions. As a consequence, we need to also consider the persistence of the mispricing.

For example, one may wonder whether for the aggregate economy it is worse for firms

to have a very short-lived alpha of 5% versus a very persistent alpha of 1%. From an

investors’ point of view, the short-lived alpha may seem more interesting, but for the firms

investment decisions, it seems hard to imagine that such short-lived mispricings matter.

Second, as alphas are return measures, they do not give an accurate representation of

the value of the mispricing. Just as the internal rate of return cannot be used to measure

the value of an investment opportunity (it is the net present value that does), the alpha

cannot be used to measure the economic importance of an anomaly.2 Thirdly, and most

importantly, it is not clear from studying alphas to what extent mispricings translate

into real investment and value added distortions.

1See papers as early as Rosenberg, Reid, and Lanstein (1985) for value and Jegadeesh and Titman
(1993) for momentum. For a recent overview of value and momentum in various asset classes see Asness,
Moskowitz, and Pedersen (2013).

2See also Berk and van Binsbergen (2015) who use this same argument to show that the alpha of a
mutual fund manager is a poor measure of the manager’s skill.
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In order to assess the real effects of documented anomalies quantitatively, we estimate

the joint dynamic distribution of firm characteristics that have been linked to mispricing

and other firm variables, such as investment, capital, and output. Based on a structural

model that matches these joint dynamics we then evaluate the counterfactual dynamic

distribution of capital, investment, and value added absent anomalies. Deviations be-

tween the counterfactual and the actual distribution allow us to assess the magnitude of

real inefficiencies caused by asset-pricing anomalies. As such, while the existing literature

evaluates asset pricing anomalies primarily based on the statistical significance of alphas,

we aim to provide a framework to gauge economic significance, as measured by distorted

investment and the present value of losses in value added.

We find that cross-sectional anomalies can have important effects on value added

and investment. Even if we assume that the aggregate firm’s cash flows are correctly

priced by the market (the Capital Asset Pricing Model (CAPM) alpha of the index is

by definition 0), cross-sectional anomalies have important effects. Due to distortions in

the cost of capital for individual firms, some firms overinvest and others underinvest,

both leading to suboptimal investment decisions and value destruction. We show that

in our current calibration, cross-sectional distortions can represent a significant fraction

of several percentage points of value added. As a consequence, if the financial sector

eliminated these mispricings it could justifiably extract large rents from this process.

Rather than taking a stance on which asset pricing model is the correct one, we aim to

provide a flexible methodology that allows assessing real distortions from pricing errors

conditional on a variety of standard asset pricing models. It is well known since Fama

(1970) that the informational efficiency of prices per se is not testable. It must be tested

jointly with some postulated asset-pricing model. As such, pricing errors are always

estimated conditional on the pricing model that an econometrician imposes. Yet, just as

the joint-hypothesis problem has not invalidated the empirical asset pricing literature, it

does not invalidate estimating the real implications of potential anomalies.

In fact, our methodology provides direct evidence on the value of asset pricing research

itself. Suppose that agents are unsure which of two benchmark asset pricing models, A

and B, is the correct one. They assign 50% probability to each model. Further, suppose

our methodology predicts that anomalies computed conditional on asset pricing model

A would cause 10% real value losses, whereas this number is 0% under model B. If

society can actively reduce mispricing, for example by publishing academic research (see

McLean and Pontiff, 2016), then determining which model is the correct one can provide
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significant value to society, as society’s optimal behavior depends on this information: if

model B is the correct model, no adjustments to existing policies need to be made. On

the other hand, if model A is the correct one, then society benefits from taking steps to

reduce mispricing. Thus, if the estimates from our methodology vary significantly across

benchmark asset pricing models, then there is also real value to asset pricing research

that helps discriminate between models (see, e.g., Chen, Dou, and Kogan, 2015).

Our calculations shed light on another important debate in the literature on financial

intermediation. One often heard critique of active mutual funds is Sharpe’s arithmetic.

Sharpe divided all investors into two sets: people who hold the market portfolio, whom

he called “passive” investors, and the rest, whom he called “active” investors. Because

market clearing requires that the sum of active and passive investors’ portfolios is the

market portfolio, the sum of just active investors’ portfolios must also be the market

portfolio. This observation is used to imply that the abnormal return of the average

active investor must be zero, what has become known as Sharpe’s critique.3 The problem

with this logic is that it does not take into account what the market portfolio would have

looked like under the counterfactual of no active management. Our paper suggests that

absent alphas, firms’ investment decision are better, thus leading to more real value

creation in the economy. To the extent that active mutual funds trade on and thereby

reduce alphas, this leads to a more valuable market portfolio. Sharpe’s arithmetic is

thus not informative regarding the question of whether or not active management adds

value to the economy. Put differently, there is a free-riding problem that allows passive

investors to benefit from the price corrections induced by active investors. By simply

comparing the performance of active and passive investors (the financial arithmetic),

these gains from altering real economic outcomes are not taken into account.

2. Related Literature

To our knowledge we are the first to quantitatively assess the real value losses asso-

ciated with cross-sectional financial market anomalies (alphas). Our focus on the real

effects connects our study to the literature in macroeconomics quantifying efficiency losses

due to capital misallocations (Hsieh and Klenow, 2009).4

3Berk and van Binsbergen (2014) provide other arguments for why Sharpe’s arithmetic is flawed.
4See also Eisfeldt and Rampini (2006) for evidence on the amount of capital reallocation between

firms and the cost of reallocation.
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The fact that we study the real implications of informational inefficiencies in financial

markets fundamentally differentiates our study from the large literatures in macroeco-

nomics and corporate finance that study external financing frictions that drive wedges

between internal and external funds (Whited, 1992, Kiyotaki and Moore, 1997, Gomes,

Yaron, and Zhang, 2003, Hennessy and Whited, 2007). For example, these wedges take

the form of leverage constraints and issuance cost that limit insiders’ ability to raise funds

externally, and can potentially constrain investment. Yet they may also involve informa-

tion asymmetries that can lead insiders to use private information to raise external funds

from markets at opportune times.5

In contrast, the informational inefficiencies we study are measured with respect to

publicly available information. By definition insiders and outsiders have symmetric access

to this type of information — some of the most prominent anomalies even rely only on

salient market and accounting information, such as book and market values. As it is

not obvious whether insiders or outsiders are better in processing all publicly available

information relevant for prices, we do not impose that either party is better at this

task. For example, it is not clear whether hedge funds or firm managers know better

in what percentile of the book-to-market distribution a firm is, or what a firm’s current

exposure (beta) to various priced risk factors is, or what the fair risk prices in light

of all public information about current macroeconomic conditions are. Thus, managers

in our analysis process this type of public information in the same way as markets and

choose investment plans that are value-maximizing according to going market prices. Yet

those market prices may be informationally inefficient and thus, imperfect indicators of

true value. The friction we study is therefore not driving a wedge between internal and

external funds, but instead creates a wedge between the efficient and actual use of all

publicly available information, which lies at the heart of an asset pricing anomaly.

In contrast, Warusawitharana and Whited (2016) evaluate the shareholder value im-

plications of an informational wedge between insiders and outsiders, where managers are

better informed and therefore perceive different valuations. Further, whereas we aim to

provide a methodology to estimate the real effects of anomalies measured with respect to

5Gilchrist, Himmelberg, and Huberman (2005) argue that dispersion in investor beliefs and short-
selling constraints can lead to stock market bubbles and that firms, unlike investors, can exploit such
bubbles by issuing new shares at inflated prices. This lowers the cost of capital and increases real
investment. They use the variance of analysts’ earnings forecasts to proxy for the dispersion of investor
beliefs, and find that increases in dispersion cause increases in new equity issuance, Tobin’s q, and real
investment, as predicted by their model. Baker, Stein, and Wurgler (2003) test the prediction that stock
prices have a stronger impact on the investment of equity-dependent firms – firms that need external
equity to finance marginal investments — and find strong support for it.
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standard asset pricing models, Warusawitharana and Whited (2016) consider misvalua-

tion shocks affecting a representative firm that are measured based on hedonic regressions.

Our paper provides a methodological contribution by presenting a simple continuous time

framework that features many of the important characteristics that have been posed in

the literature, yet still maintains a simple tractable setting that allows us to evaluate the

stationary cross-sectional distribution of the quantities of interest in closed-form.

Rather than processing all public information in the same way as market participants,

managers might simply use market prices as a signal that aggregates relevant information.

The notion that managers rely on market prices when making investment decisions is

central to the literature on the real feedback effects of financial markets. The influence of

prices on the allocative efficiency of resources goes at least as far back as Hayek (1945).

Further, the allocational role of prices in secondary financial markets and their influence

on real investment has been studied theoretically in papers such as Leland (1992), Dow

and Gorton (1997), Subrahmanyam and Titman (2001), and Goldstein, Ozdenoren, and

Yuan (2013).

On the empirical side, several papers also find evidence consistent with firm behavior

that responds to information encoded in financial market prices. Barro (1990) shows

that changes in stock prices have substantial explanatory power for U.S. investment,

especially for long-term samples, and even in the presence of cash flow variables. The

specification he employs outperforms standard Tobin’s q regressions. Chen, Goldstein,

and Jiang (2007) show that two measures of the amount of new information in stock

prices — price nonsynchronicity and probability of informed trading — have a strong

positive effect on the sensitivity of corporate investment to stock prices. They argue that

firm managers learn from the information about fundamentals encoded in stock prices

and incorporate this information in corporate investment decisions. Polk and Sapienza

(2009) use discretionary accruals as a proxy for mispricing and find a positive relation

between abnormal investment and discretionary accruals. Edmans, Goldstein, and Jiang

(2012) identify a strong effect of market prices on takeover activity, and conclude that

that financial markets have real effects by affecting managers’ behavior. The view that

firm investment behavior responds to discount rates is also consistent with the empirical

success of q-theory motivated asset pricing factors. Hou, Xue, and Zhang (2015) show

that factors constructed based on investment and profitability significantly outperform

the CAPM in explaining the cross-section of expected returns. Thus, firm managers

indeed seem to respond to the discount rates that the market applies to their cash flows,

in particular also to the components of discount rates that are not predicted by the
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CAPM.

David, Hopenhayn, and Venkateswaran (2016) estimate that a firm’s inability to

perfectly predict its own productivity when making ex ante investment decisions causes

sizable output losses. The authors also estimate that firm’s learn more about their

firm-specific productivity from private signals than from market prices. Conceptually

we are interested in a different question — the starting point for our analysis is the

large literature documenting asset pricing anomalies, which are estimated conditional

on an asset pricing model such as the CAPM. The counterfactual we evaluate is not a

world where firms can perfectly predict their idiosyncratic productivity but one where

prices are informationally efficient with respect to public information. For our question,

we can be agnostic if managers learn from market prices, or if they simply interpret

public information in the same way as market participants, and thus assign the same

distorted valuations as the market. The fact that studies like Morck, Shleifer, and Vishny

(1990) find weak incremental explanatory power of stock prices for investment spending

is therefore also not inconsistent with our analysis. What does matter is that managers

choose investment policies that maximize the observed market prices of their firms. It is

important to note that in our dynamic model with lumpy asset growth and adjustment

cost, this firm behavior is fully consistent with a highly noisy investment-q relation and

wide dispersion in measures of marginal revenue products.

3. Reduced-Form Estimates and Their Shortcomings

In this section we present reduced-form measures of mispricing. We start by comput-

ing the alphas of the decile-sorted portfolios, the Markov transition matrices of the decile

portfolios, as well as the dollar-values represented by these portfolios.

3.1. Alphas

First we replicate CAPM alphas on four well-known anomalies for the sample period

1975-2014. We sort firms into decile portfolios based on their (1) lagged book-to-market

ratio, (2) investment as measured by asset growth, (3) gross profitability, as well as (4)

their past annual return (momentum) and form 10 value-weighted portfolios each month.

We then regress the portfolio excess returns (returns on decile i denoted by Rit minus
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the risk free rate Rft) on the excess return of the market Rmt −Rft:

Ri,t+1 −Rft = αi,btm + βi,btm(Rm,t+1 −Rft) + εi,t+1 (1)

The results are summarized in Panels A and B of Table 1. The panels confirm the

findings in the literature that there are return spreads that are not explained by the

CAPM. Firms with high book-to-market ratios, low investment, high gross profitability

and high past returns earn high average returns over this sample period with annual

return spreads ranging from 3% (profitability) to 12% (momentum). To get a first sense

of the aggregate mispricing (MP) we compute the average absolute value of the alpha.

That is, we define the mispricing measure MP for anomaly j as:

MPj =

∑10
i=1 | αi,j |
10

. (2)

The results are summarized in the second column of Table 2. The numbers range from

1.1% for profitability to 3.6% for momentum. One potential downside of this measure

of aggregate mispricing, however, is that it does not properly account for size differences

across the deciles. That is, if most (least) capital is concentrated in the deciles with the

least mispricing, the measure in (2) overstates (understates) the amount of mispricing.

To address this issue, we recompute the measures above using the aggregate market value

of equity (E) of the decile as weights in the computation. Define the weight of decile i

for anomaly j as:

wei,j =
1

T

T∑
t=1

Ei,j∑10
i=1Ei,j

, (3)

then the equity-weighted mispricing measure is given by:

EMPj =
10∑
i=1

wei,j | αi,j | . (4)

The weights wei,j are summarized in Panel C of Table 1. The results are summarized

in the third column of Table 2. Interestingly, for all anomalies this weighted average

(EMP) is lower than the simple average (MP) and particularly so for momentum and

book-to-market, suggesting that more mispricing occurs in deciles with lower market

capitalizations. Another important question that naturally arises is whether the mis-

pricing only applies to the equity portion of the balance sheet or to the debt portion as

well. Put differently, what if the debt fraction of the firm is similarly mispriced as the

equity portion? To assess the importance of mispricing in that case, we recompute the
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Decile 1 2 3 4 5 6 7 8 9 10

Panel A: Raw Returns
BtM 0.0100 0.0092 0.0104 0.0104 0.0112 0.0113 0.0124 0.0139 0.0138 0.0167
Invest 0.0133 0.0120 0.0123 0.0127 0.0117 0.0111 0.0106 0.0104 0.0113 0.0089
Profitability 0.0099 0.0109 0.0112 0.0101 0.0109 0.0113 0.0115 0.0106 0.0115 0.0125
Momentum 0.0051 0.0085 0.0083 0.0108 0.0094 0.0100 0.0118 0.0126 0.0133 0.0155

Panel B: CAPM Alphas
BtM -0.0014 -0.0014 0.0001 0.0000 0.0011 0.0010 0.0020 0.0034 0.0030 0.0059
Invest 0.0019 0.0013 0.0021 0.0030 0.0018 0.0013 0.0002 -0.0004 0.0000 -0.0033
Profitability -0.0020 0.0004 0.0014 -0.0002 0.0006 0.0009 0.0008 0.0000 0.0013 0.0015
Momentum -0.0101 -0.0041 -0.0032 0.0003 -0.0008 0.0001 0.0019 0.0025 0.0027 0.0039

Panel C: Time Series Average of Decile’s Equity Value as Fraction of Total
BtM 0.1420 0.1445 0.1325 0.1208 0.1152 0.0993 0.0931 0.0776 0.0545 0.0204
Invest 0.0219 0.0505 0.0889 0.1204 0.1312 0.1434 0.1491 0.1223 0.1037 0.0687
Profitability 0.0529 0.0839 0.1016 0.1112 0.1424 0.1109 0.0976 0.1052 0.1129 0.0814
Momentum 0.0173 0.0520 0.0856 0.1107 0.1269 0.1396 0.1438 0.1378 0.1197 0.0665

Panel D: Time Series Average of Decile’s Aggregate Firm Value (Equity plus Debt) as Fraction of Total
BtM 0.0556 0.0625 0.0687 0.0804 0.1038 0.1230 0.1508 0.1962 0.1299 0.0290
Invest 0.0252 0.0566 0.0962 0.1217 0.1305 0.1490 0.1511 0.1216 0.0914 0.0568
Profitability 0.2436 0.2142 0.1188 0.0834 0.0896 0.0643 0.0511 0.0497 0.0503 0.0350
Momentum 0.0255 0.0608 0.0923 0.1179 0.1332 0.1445 0.1434 0.1308 0.1047 0.0468

Panel E: Persistence as Measured by Diagonal Element of Decile in Markov Matrix
BtM 0.5771 0.3524 0.2890 0.2583 0.2461 0.2444 0.2634 0.3026 0.3379 0.5274
Invest 0.2750 0.1789 0.1628 0.1513 0.1531 0.1496 0.1496 0.1604 0.1854 0.2274
Profitability 0.6569 0.6135 0.5384 0.4556 0.3997 0.3762 0.3747 0.4054 0.4700 0.6639
Momentum 0.1758 0.1150 0.1033 0.1055 0.1079 0.1218 0.1131 0.1080 0.0973 0.1158

Table 1
Anomalies: The table reports several characteristics of often-studied anomalies. We sort stocks into
portfolios based on (1) their lagged book-to-market ratio (value-growth), (2) their investment (per-
centage change in total assets), (3) their operating profitability and (4) their past 12-month return
(momentum). Panel A reports average monthly returns for each decile portfolio. Panel B reports
monthly CAPM alphas. Panel C reports the deciles average weight in terms of equity outstand-
ing. That is, for each month we compute the amount of equity outstanding in the decile and divide
this by the total amount of equity across all deciles. We then take a time series average of these
weights. Panel D reports the same quantities as Panel C but using total firm value (debt plus eq-
uity). Panel E reports the diagonal element of the decile in the annual Markov transition matrix.

value-weighted measure using total firm value in the weights. That is, we compute the

weights:

wmi,j =
1

T

T∑
t=1

Ei,j + Li,j∑10
i=1Ei,j + Li,j

, (5)
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MP EMP VMP

BtM 0.0231 0.0165 0.0232
Invest 0.0185 0.0166 0.0166
Profitability 0.0109 0.0100 0.0124
Momentum 0.0355 0.0241 0.0243

Table 2
An overview of aggregate mispricing measures for different anomalies. The measure MP
is simply the average absolute value of the CAPM alpha cross the deciles. The measure
EMP computes an average absolute alpha as well but on a weighted basis. The weights
of each decile are determined by the amount of equity capital in that decile. The measure
VMP is the same as the measure EMP but uses total firm value to compute the weights.

where Li,j is the book value of the liabilities of each firm, and define the firm-value-

weighted mispricing measure as:

VMPj =
10∑
i=1

wmi,j | αi,j | . (6)

The results are summarized in the last column of Table 1. Interestingly, we find that by

weighting by total firm size, the weighted mispricing of book-to-market sorted portfolios

is about the same size as the unweighted one. The mispricing measure of momentum

remains significantly lower on a weighted basis, regardless of the weighting scheme.

Even though these measures could be useful as first estimates of the importance of

mispricing, they miss one important feature which is the persistence of the mispricing.

Momentum is a short-lived phenomenon, whereas value is a long-lived one. One way

to assess the persistence is to compute Markov transition matrices that summarize how

firms migrate across deciles. We compute for each anomaly an annual Markov transition

matrix. The diagonal elements of these matrices are summarized in Panel E of Table 1.6

As expected, the table shows that momentum is a much shorter-lived anomaly than the

value anomaly. The average diagonal element for value is 0.34, with values above 0.5

for the two extreme portfolios. For momentum the average diagonal element is 0.12 and

the first diagonal element (the (1,1) element) equals 0.17. Given that momentum is so

much less persistent than value we would expect this lack of persistence to substantially

lower the influence of momentum on firms’ decisions. The most persistent anomaly is

6The full Markov matrices are listed in the Appendix.
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profitability with an average diagonal Markov element of 0.50 across the deciles.

There also seems to be a negative relationship between the mispricing measures and

their persistence. The three panels in Figure I plot the mispricing measured against the

persistence of the anomalies as measures by the average diagonal elements of the 1st and

10th deciles. For all mispricing measures the relationship is negative: the short-lived

anomalies have high mispricing measures but low persistence.
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FIGURE I
Mispricing Measures vs Persistence. The graphs plots for each anomaly the mispricing mea-
sure against the persistence of the anomaly. The persistence is measures as the average of the
(1,1) and the (10,10) element of the annual Markov transition matrix of firms across the deciles.
Panel A uses MP as the mispricing measure. Panel B and C use EMP and VMP respectively.

We have now presented a range of reduced-form measures of mispricing. Even though

all these measures give an impression of how important cross-sectional mispricing can be,

none of them address arguably the most important question. What is the influence of

these anomalies on real economic quantities?

3.2. A Different Counterfactual

To better understand why alpha measures by themselves (even the weighted ones)

are not informative regarding economic losses, consider the following one-period example.

Consider a firm i that generates cash flows at time 1, denoted by CFi1. The value at
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time 0 that the market places on these cash flows is a function of αi0 and given by:

Vi0(αi0) =
E0 [CFi1]

1 + rf + βiψ0 + αi0

. (7)

where rf is the risk free rate, ψ0 is a measure of the risk price and βi measures the usual

scaled covariation with the stochastic discount factor. Interpreting αi0 as a distortion

in the discount rate is isomorphic to a distortion in the beliefs (probabilities) regarding

the cash flows. Suppose we observe αi0 = ϕ in the data. It is clear that the value of

the firm Vi0 is affected by this distortion at time 0. However, as long as the actual cash

flows of the firm are not affected by αi0, and thus real economic quantities are unaffected,

the misvaluation will resolve itself at time 1 through the higher return, and no further

losses to the economy occur. Computing the ratio of Vi0(αi0 = 0) to Vi0(αi0 = ϕ) in this

one-period example is equally informative as the value of ϕ itself.

In this paper, we are interested in the value distortions that happen when the cash

flows of the firm are affected by αi0. That is, we model the real investment decisions of

the firm as a function of αi0, i.e. CFi1 (αi0).
7 We then compare the valuation under the

actual firm policies:

V act
i0 =

E0 [CFi1(αi0 = ϕ)]

1 + rf + βiψ0

(8)

to the valuation under the optimal firm policies:

V opt
i0 =

E0 [CFi1(αi0 = 0)]

1 + rf + βiψ0

. (9)

Note that in both cases we discount by the “true” discount rate (α = 0), not the discount

rate that is distorted (α = ϕ). Finally, in this one-period example there was no dynamic

resolution of alpha over time, but in reality different types of mispricing resolve over

different time horizons. We thus need a model that allows for such dynamic resolution.

In summary, the model that we need has three requirements. First, it is has to be

dynamic. Second, it should be easy-to-solve, in the sense that given a policy we would

like to obtain closed-form solutions of the stationary cross-sectional distribution of the

variables of interest. Third, it should be easy to estimate in the data. We describe such

a model in the next section.

7Again, interpreting αi0 as a distortion in the firm’s discount rate is isomorphic to interpreting it as
a distortion in the firm’s beliefs.
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4. The Model

The economy we study is in continuous time. A cross-section of firms operate tech-

nologies with decreasing returns to scale and capital adjustment costs. The structural

parameters of the model are governed by a set of state variables, which are described

in detail in Section 4.2 below. For notational convenience, we will omit parameters’

functional dependence on these states elsewhere in the model description.

4.1. Firm Technology

The firm generates an output flow rate AKη, where K denotes the firm’s capital

stock, and incurs a proportional cost of production at rate cfK. The capital stock is

affected by firm investment I+, disinvestment I−, and depreciation shocks. Character-

izing cross-sectional firm dynamics along dimensions such as investment and valuation

ratios is essential for assessing the influence of cross-sectional mispricings on real eco-

nomic quantities. We propose a novel specification of the investment technology that

yields closed-form solutions for conditional and stationary distributions of all quantities

of interest, allowing us to side-step simulations when estimating the model. Specifically,

capital K takes values in a discrete set indexed by κ ∈ Ωκ = {1, 2, ..., Nκ}, where K is

given by:

K(κ) = Kle
(κ−1)·∆. (10)

By choosing ∆ small enough the model can approximate a model with a continuous

support for K arbitrarily well. The discrete state space structure, however, increases the

tractability of the model and allows obtaining exact solutions.8

Firms can search for opportunities to upgrade their capital stock. Each firm chooses

its expected investment rate i+ ≡ E[I+]
K

and stochastically succeeds in upgrading its

capital K to the next-higher level, that is, by an amount:

I+ = Ke∆ −K, (11)

with a Poisson arrival rate i+
e∆−1

.9 When choosing i+ ≥ 0 a firm incurs search and

8Models with a continuous support are in any case approximated by a discrete state space model
when solved numerically.

9Thus, the expected rate at which capital grows due to investment is given by (e∆ − 1) · i+
e∆−1

= i+.
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investment-related cost that are quadratic in this expected investment rate: (c1i+ +

c2i
2
+)K. When a firm reaches the upper bound of the capital stock support, K(Nκ),

investment is assumed to be ineffective in generating further increases in capital. By

choosing Nκ high enough, this boundary will have no effects on the results, as optimal

investment will be zero above some endogenous threshold for capital.

Firms can also search for opportunities to sell their capital in order to disinvest.

Choosing an expected disinvestment rate i− ≡ E[I−]
K

≥ 0 leads to disinvestment by an

amount I− = K −Ke−∆ with a Poisson arrival rate i−
1−e−∆ . Search is costly, leading to

a quadratic search cost of c2−i
2
−K. The expected revenue flow rate from capital sales

is c1−i−K. We assume that disinvestment is impossible when capital reaches the lower

bound Kl. Again, by choosing Kl low enough we can ensure that the firm would never

optimally attempt to disinvest at the lower bound in any case, so that this restriction is

also non-binding.

Capital also depreciates stochastically to the next-lower level, that is, from K to

Ke−∆, with a Poisson intensity δ
1−e−∆ , except at the lower boundary Kl. Thus, the

expected depreciation rate is δ, except in the lowest capital state, where it is zero.

Let N+ and N− denote counting processes that keep track of successful capital acqui-

sitions and sales, and let N δ denote a counting process that keeps track of depreciation

shocks. Capital evolves according to a jump process:10

d log(Kt) = ∆(dN+
t − dN−

t − dN δ
t ), (12)

where expected changes in capital are given by E[dKt] = (i+ − i− − δ)Ktdt.

4.2. Exogenous State Variables

There are three types of stochastic processes that govern the structural parameters

of the economy: a firm-specific state z, a mean-reverting aggregate state Z, and an

aggregate trend factor Y .

Firm-specific states (z). The state z governs cross-sectional properties of structural

parameters, such as mispricing α, depreciation δ, and total factor productivity A. The

dynamics of z thus affect key endogenous objects, such as the firm-size distribution,

10In the following, all processes will be right continuous with left limits. Given a process yt, the
notation yt− will denote lims↑t ys, whereas yt denotes lims↓t ys.
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idiosyncratic risk, exposures to aggregate risk, and growth. We assume that z follows a

continuous time Markov chain that takes values in the discrete set Ωz. Let Λz(Z) denote

the generator matrix that collects transition rates between firm-states z conditional on

the aggregate state Z. Dependence on the macro state Z allows capturing dependencies

between cross-sectional dynamics and macro-economic conditions.

Macroeconomic state (Z). The state Z captures the mean-reverting component

of the macro economic environment (e.g., booms vs. recessions). We assume that Z

follows a continuous time Markov chain that takes values in the discrete set ΩZ . Let ΛZ

denote the generator matrix that collects transition rates λ(Z,Z ′), and let ΛZ(Z) denote

the Z-th row of this generator matrix.

Aggregate trend (Y ). The state Y captures an aggregate trend that follows a

geometric Brownian motion:

dYt
Yt

= µ(Zt)dt+ σ(Zt)dBt. (13)

The variable Y can capture a macro trend growth. Y is assumed to enter both a firm’s

cost function and its output linearly, that is, the cost function parameters and the TFP

variable A all scale linearly with Y . The trend reflects a gradual increase in output and

the price of capital.

4.3. Market Valuations

Let s denote the vector of state variables. The market values a stochastic stream of

future after-tax net-payouts of a firm {π(sτ )}∞t as follows:

Et

∫ ∞

t

m(sτ )

m(st)
e−

∫ τ
t α(sk)dkπ(sτ )dτ, (14)

where m represents the undistorted stochastic discount factor (SDF) that corresponds

to the relevant marginal utility process of a representative household, E represents an

unbiased rational Bayesian expectation that incorporates all public information, and α

can be interpreted as capturing a distortion (bias) in beliefs further discussed below. All

agents in the economy have homogenous beliefs. The economy is arbitrage-free under

these beliefs.

Beliefs. The pricing equation for firms (14) is flexible enough to capture two types
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of belief distortions: (1) biased beliefs about future state-contingent firm cash flows, or

(2) biased beliefs about future state-contingent marginal utilities (SDF).

For the first type of bias, α can be specified as a function of both aggregate and

firm-specific elements of the state vector s. In this case, agents have perfect knowledge

of the unbiased state prices; the date-t market price of an Arrow-Debreu security paying

at date τ in state sτ is given by

q(sτ |st) = Pr[sτ |st]
m(sτ )

m(st)
, (15)

where Pr[sτ |st] is a state probability corresponding to the perfect Bayesian expectation

operator mentioned above. Agents’ beliefs are biased in that they believe that the firm’s

payout at time τ in state sτ is:

πdis(sτ |st) = π(sτ ) · E[e−
∫ τ
t α(sk)dk|sτ , st], (16)

rather than π(sτ ). Equation (16) implies that when approaching date τ and state sτ

agents’ beliefs converge to the true value π(sτ ). As the distortion can vary across aggre-

gate states, it generally affects the perceived exposures of a firm’s cash flows to aggregate

risks priced by the SDF, thus also capturing distortions in agents’ beta estimates. For

example, if agents were excessively pessimistic about a firm’s performance in a poten-

tial future recession, this would be captured by a persistent positive alpha that leads to

excessive discounting of the firm’s future payouts in those states.

For the second type of bias, α is specified a function of only the aggregate elements

of the state vector s. In this case, (14) can be interpreted as capturing belief distortions

about the marginal utilities across aggregate states. In particular, the date-t market

price of an Arrow-Debreu security paying at date τ in state sτ is given by:

qdis(sτ |st) = Pr[sτ |st]
m(sτ )

m(st)
E[e−

∫ τ
t α(sk)dk|sτ , st]. (17)

We consider a partial equilibrium analysis in the sense that we quantify efficiency

losses, taking as given a particular SDF. This partial equilibrium approach is motivated

by two observations: first, due to data limitations we analyze only publicly traded firms,

thus missing a significant part of output that would have to feature in a general equi-

librium analysis. Second, while in general equilibrium the SDF would change under the

counterfactual of efficient financial markets (since output and consumption change), we
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know that risk free rates tend to be not volatile and thus respond fairly little to in-

creases in consumption growth,11 suggesting that this indirect channel is of second-order

importance for our analysis.

We consider a flexible Markov-modulated jump diffusion process to describe the dy-

namics of m:

dmt

mt−
= −rf (Zt−) dt− ν(Zt−)dBt +

∑
Z′ ̸=Zt−

(eϕ(Zt−,Z′) − 1)dMt (Zt−, Z
′) . (18)

Here rf denotes the risk free rate, ν is the price of risk for aggregate Brownian shocks,

ϕ(Z,Z ′) is a jump risk premium, and dM(Z,Z ′) is a compensated Poisson process cap-

turing switches between the macroeconomic Markov states Z and Z ′.12 Let Λ̄Z denote

the generator under the risk neutral measure, that is, λ̄(Z,Z ′) = eϕ(Z,Z
′)λ(Z,Z ′).13

4.4. Firm Objective

Firm managers take the market prices of their firm as given and choose the investment

strategy that maximizes this market value at any point in time. Firm managers know how

the market values all their potential investment proposals, but they do not have superior

information about whether these valuations are biased or not. As a result, managers do

not second-guess these market valuations.

The view that managers maximize the firm’s market value appears as a plausible

benchmark for several reasons: first, it is not clear that firm managers know better than

market participants how the market should value the firm’s future cash flows — market

participants might in fact have a better sense of what the firm’s true risk exposures are

and what the fair risk compensations (premia) should be. Further, compensation con-

tracts are often tightly linked to current market prices, creating incentives for managers

to maximize the market value at any point in time.

11Further, assuming that risk premia are unaffected would be conservative, if the undistorted risk
premia fell in the boom following the elimination of cross-sectional anomalies and improved capital
allocation.

12Formally, dM(Z,Z ′) = dN (Z,Z ′) − λ(Z,Z ′)dt, where N(Z,Z ′) is a counting process that keeps
track of the jumps from Markov state Z to state Z ′.

13With this pricing kernel exposures to innovations in the state variables Y and Z can bear a risk
premium. The cross-sectional distribution of firm-specific states z does not additionally affect the process
m. More generally, in a general equilibrium setting, the current distribution of firm-specific states z in
the cross-section of firms could constitute another state variable. The proposed setup is in principle
sufficiently flexible to capture this aspect as well: the set ΩZ can be defined in a way that allows the
state Z to summarize the current state of the cross-sectional distribution of z as well.
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5. Analysis

5.1. Firm Behavior

In this subsection we analyze firm behavior in the presence of pricing distortions. Let

the firm’s value function be denoted by V (κ, z, Z, Y ), where

V (κ, z, Z, Y ) = max
{i+,i−}≥0

Et

∫ ∞

t

mτ

mt

e−
∫ τ
t αsdsπ(τ)dτ, (19)

and where we define the conditional expected after-tax net-payout:

π(t) =(1− τ)(AKη
t − (cf + c1+i+ + c2+i

2
+ − c1−i− + c2−i

2
−)Kt)

+ (i− + δ − i+)c1+τKt, (20)

where we assume that firms obtain tax shields from depreciation, proportional cost of

production, quadratic search cost, and selling capital below the purchase price c1+.

Since the parameters A, cf , c1+, c2+, c1−, and c2− are assumed to be linear in the

trend component Y , we can conjecture that the value function is linear in Y , that is,

V (κ, z, Z, Y ) = Y · Ṽ (κ, z, Z), where going forward, a tilde indicates that a variable

is scaled by Y . The Hamilton-Jacobi-Bellman equation associated with problem (19)

implies that Ṽ (κ, z, Z) solves the following set of equations for all (κ, z, Z) ∈ Ωκ × Ωz ×
ΩZ :

14

0 = max
i+,i−≥0

[π̃(κ, z, Z)− (rf (Z) + σ(Z)ν(Z) + α(z, Z)− µ(Z))Ṽ (κ, z, Z)

+
i+

(e∆ − 1)
(Ṽ (κ+ 1, z, Z)− Ṽ (κ, z, Z))

+
δ + i−

(1− e−∆)
(Ṽ (κ− 1, z, Z)− Ṽ (κ, z, Z))

+ Λ̄Z(Z)Ṽ
Z(z, κ) + Λz(Z)Ṽ

z(Z, κ)] (21)

where VZ and Vz are vectors that collect the values of the function V evaluated at all

possible elements in the sets ΩZ and Ωz, respectively.

The first-order conditions of this problem yield a firm’s optimal expected investment

14See Appendix B for details.
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and disinvestment rates:

i∗+(κ, z, Z) =max


(

Ṽ (κ+1,z,Z)−Ṽ (κ,z,Z)
(e∆−1)K(κ)

− c1+(z, Z)
)

2(1− τ)c2+(z, Z)
, 0

, (22)

i∗−(κ, z, Z) =max


(

Ṽ (κ−1,z,Z)−Ṽ (κ,z,Z)
(1−e−∆)K(κ)

+ (1− τ)c1−(z, Z) + τc1+(z, Z)
)

2(1− τ)c2−(z, Z)
, 0

. (23)

Note that conditional on these policy functions the system (21) is linear in Ṽ (κ, z, Z),

which will make determining an exact solution easy and fast.

Risk premium. The firm’s risk premium under rational beliefs is given by:

rp(κ, z, Z) = σ(Z)ν(Z)−
∑
Z′ ̸=Z

λ (Z,Z ′)
(
eϕ(Z,Z

′) − 1
)( Ṽ (κ, z, Z ′)

Ṽ (κ, z, Z)
− 1

)
.

The risk premium features compensation for exposures to both innovations to the Markov

state Z and Brownian innovations to the common trend Y . In the model both betas and

risk prices are state-dependent.

5.2. Stationary Distribution

To measure efficiency losses it is essential to capture the stationary cross-sectional

distribution of firm characteristics such as size and the Book-to-Market ratio. We show

in Appendix C how, for any given policy function, we can compute the stationary dis-

tribution in closed-form, which greatly facilitates the estimation and evaluation of the

model.

6. Estimating the Model

6.1. Specification of the Markov Processes

We consider a parsimonious specification of the model with three independent firm-

specific processes: a process for productivity A, an α-process, and a technology process

jointly governing depreciation δ and operating cost cf . Corresponding to these three

processes the firm-specific state z can be characterized by a tuple (Ã, α, g), where g
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denotes the technology state. In addition, the macro-state Z governs trend growth µ,

trend volatility σ, as well as risk prices.

6.2. Calibration and Estimation

We calibrate the parameters of the macroeconomy based on the existing literature

(e.g. Chen, Cui, He, and Milbradt (2015)) and estimate firm-specific parameters using

a method of moments approach. We estimate 22 parameters by targeting 32 moments

related to the cross-sectional distribution of firms: 9 book to market decile breakpoints,

6 book asset breakpoints, 7 book asset growth percentiles, and 10 CAPM alphas corre-

sponding to the book-to-market deciles.15

The calibrated and estimated parameters are summarized in Table 3 and all fall in a

range that is broadly consistent with the literature. The depreciation rates for the two

technology states are 12% and 14% close to the standard values used in the literature.

The proportional costs of production are 1% and 27% for the two technology states. The

states themselves are driven by a persistent Markov process (conditional on being in a

particular state, you are expected to stay there for roughly 10 years). The decreasing

returns to scale parameter takes on a value of 0.95, which implies a technology close to

an AK technology.16 The mispricing variable (alpha), can take three values: -16.6%, 0%

and 13.5%, the Markov switching probabilities vary by state. For example, moving to

the low alpha state while in the 0 alpha state is less likely than moving to the high alpha

state. The discount on selling used capital (1− c1−) equals 30%. Finally, there are very

high quadratic search costs for finding buyers for used capital. In contrast, upgrading

capital is less subject to frictions.

15Since we observe only publicly traded firms we also account for delistings that hit firms with Poisson
arrival rates that are calibrated to the data as a function of a firm’s sales-to-assets ratio. Specifically, to
match delisting rates in the data we estimate historical (average) exit rates in each sales-to-book decile.
A firm’s exogenous delisting rate is then determined via interpolation as a function of its sales-to-book
ratio. A firm that delists from public equity markets (e.g., because of an M&A transaction, a private
equity deal, or a default that transfers assets to debt holders) is assumed to continue its operations,
following the same policies as it would as a publicly traded firm. As a result, a delisting event by
itself does not increase or destroy value, and the possibility of a delisting does not affect the firm’s
maximization problem analyzed in Section 4.4. Yet delistings do affect the distribution of various firm
outcomes conditional on staying publicly traded. For example, delistings affect the distribution of annual
book capital changes when the sample is restricted to firms that are publicly traded in years t and (t+1).
Finally, we presume that, in any state of the world, new firms enter the publicly traded universe at the
same rate as existing firms delist.

16As a robustness we have also run our estimation setting this parameter to 0.65, leading to similar
implications regarding welfare losses induced by financial market distortions.

19



The fitted moments generated by the parameters listed in Table 3 are summarized

in Figure II. The figure summarizes the distributions of the moments in the data (the

black solid line), the 95% confidence bounds generated from the data (the black dotted

lines) as well as the model-implied distribution (red dashed line). The figure shows that

the model has a reasonably good fit of the data moments when it comes to the firm-size

distribution (the top panel), the book-to-market ratio distribution (the second panel),

the investment (change in book value) distribution (the third panel), as well as the value

premium alpha distribution (bottom panel). The model moments all fall within the 95%

confidence bounds, with the exception of the extreme book value percentiles and lowest

investment percentiles.

To interpret our results correctly, it is important to note that in the model Tobin’s q

emerges as a noisy measure of a firm’s underlying alpha state. Much of the variation in

Tobin’s q is still due to technology shocks, which are completely independent of α.
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Parameters of the Macroeconomy (Calibrated)

Parameter Variable Z = G Z = B

Transition rates for aggregate states λ 0.100 0.500
Trend growth µ 0.030 −0.010
Trend risk exposure σ 0.160 0.160
Risk-free rate rf 0.020 0.020
Local risk price ν 0.165 0.255
Jump in m upon leaving state Z eϕ − 1 1.000 −0.500
Tax rate (personal + corporate) τ 0.450

Constant Firm-specific Parameters

Parameter Variable Estimated Values

Rate of moving to next-higher Ã hA+ 3.476

Rate of moving to next-lower Ã hA− 3.989
Purchase price of capital c1+ 1.034
Upward adjustment cost c2+ 0.902
Sales price of capital c1− 0.708
Downward adjustment cost c2− 29.448
Decreasing returns to scale parameter η 0.950

Firm-specific g-Process & Associated Technology Parameters

Parameter Variable g1 g2

Rate of moving to next-higher g-state hg+ 0.108 -
Rate of moving to next-lower g-state hg− - 0.101
Depreciation rate δ 0.144 0.120
Proportional cost of production cf 0.269 0.010

Firm-specific α-Process

Parameter Variable α1 α2 α3

Rate of moving to next-higher α-state hα+ 1.013 1.866 -
Rate of moving to next-lower α-state hα− - 0.155 2.699
Abnormal return α -0.166 0 0.135

Table 3
Parameters. The two tables list parameters of the macroeconomy and firm-specific parameters. The
parameters of the macroeconomy are calibrated. We estimate firm-specific parameters via a method of
moments approach. The set of factor productivity states are given by Ãi = A1e

∑
j<i aj with A1 = 0.163

and aj ∈ {0, 0.093, 0.051, 0.010, 0.189, 0.367, 0.323, 0.278, 0.389, 0.500}, where we estimate only every
second aj-value and determine the remaining values via interpolation. The capital grid is characterized
by the lower bound Kl = 0.00239 (the value is scaled so that the median firm’s capital is 1), the
number of capital grid points Nκ = 160, and the log-change in capital between grid points, ∆ = 0.1.
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FIGURE II
Model Fit. This graph plots for each variable the model’s values (dotted red line) and compares it with the data in black (including 2 standard error
bounds).
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7. Results

7.1. Under- and Overinvestment

First we assess the influence of cross-sectional distortions on investment. In Figure III

we plot the probability distribution function (PDF) of the log ratio of actual over optimal

investment (where defined). To purely focus on the cross-sectional effects, we demean

the alpha process by its unconditional average before solving the equilibrium. The plot

shows substantial deviations from the optimal investment policy induced by alpha, with

both substantial over- and underinvestment.
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FIGURE III
Investment Distortions. The graph plots the probability distribution function (PDF) of the log
ratio of actual over optimal investment (where defined). To purely focus on the cross-sectional ef-
fects, we demean the alpha process by its the unconditional average before solving the equilibrium.

Even though the plot shows that investment distortions can be large, it is not clear

how important these effects are on aggregate value creation, which we explore in the next

section.
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7.2. Measuring Potential Efficiency Gains

To assess the influence of cross-sectional distortion on value, we first compute the

stationary distribution of all states for the estimated model under the distorted policies.

Let pact denote the vector of probabilities for all states under this stationary distribution.

Further, let V act(α = 0) denote the corresponding vector of firm values if firms follow

the actual (suboptimal) policies and prices are determined under the undistorted SDF

(α = 0). The unconditional true value of the cross-section of all firms is then given by

pact · V act(α = 0). Finally, let V opt(α = 0) denote the vector of firm values if firms do

follow socially optimal policies and prices are determined under the undistorted SDF

(α = 0) .

If, starting from the actual stationary distribution of all states (in particular capital),

firms switch from following suboptimal policies to following optimal policies the present

value of surplus rises in expectation by:

gain =
E[
∫

mτ

mt
πopt
τ dτ |pact]

E[
∫

mτ

mt
πact
τ dτ |pact]

− 1 =
pact · V opt(α = 0)

pact · V act(α = 0)
− 1 = 10.6% (24)

As before, to purely focus on the cross-sectional effects, we demean the alpha process by

its unconditional average before solving the equilibrium.

Interpretation of the gain estimate. The gain estimate can be interpreted as

society’s willingness to pay as a perpetual percentage fee of total firm net payout for

perpetually eliminating the alpha process under consideration. gain thus can be viewed

as the magnitude of potential compensation of financial intermediaries, provided these

intermediaries completely eliminate alpha. It is important to note that 10.6% of public

firm net-payout is significantly less than 10.6% of GDP. Further, trading activity that

simply reduces the value effect until it is statistically insignificant would not yield the

full effect, as value-sorts are merely noisy measures of underlying alphas — variation in

book-to-market ratios is largely due to technology shocks, which are orthogonal to the

alpha shocks in our model. Finally, our estimate says nothing about the fair compen-

sation that the financial sector should have received historically. Instead, it evaluates

how large compensation could be if the financial sector eliminated existing informational

inefficiencies in the future.
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7.3. Value Gain and Tobin’s q

In this subsection we assess whether the value gain from moving to optimal invest-

ment policies (i.e. removing alpha) differs for firms with different book-to-market ratios.

Figure IV plots the value gain as a function of Tobin’s q. That is, conditional on having

a particular value of Tobin’s q, the picture shows how much value can be gained. The

graph shows that most of the value gain from removing alpha distortions (i.e. moving

to optimal investment policies) is achieved for growth firms, not value firms. To see

why, consider the case of firms with a Tobin’s q lower than 1. Both in the data as well

as in our model about 30% of firms have this characteristic, which illustrates that the

costs for disinvesting are high. Such firms, if anything, would like to disinvest, as their

capital could be used more efficiently outside of the firm. Yet, because the frictions to

disinvesting are so large, they refrain from doing so. When the alpha distortion for such

firms is removed, the firm still does not have an incentive to invest nor can it disinvest.

As a consequence, the alpha distortion does not materially affect the firm’s investment

behavior. This is different for growth firms. Growth firms invest heavily and their invest-

ment rate is highly sensitive to their valuation, leading to large deviations from optimal

investment (over- or underinvestment), and thus value destruction.

0 1 2 3 4 5
Tobin's q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 R
el

at
iv

e 
G

ai
n

FIGURE IV
Value Gains vs Tobin’s q. This graph plots the average value gain for an individual
firm from moving to optimal investment policies as a function of Tobin’s q (horizontal axis).

In Figure V we plot the same relationship as in Figure IV with the difference that

this graph incorporates the amount of value that is concentrated at each level of Tobin’s

q. It shows that most of the value gain in the economy can be generated by adjusting

25



the investment policies of firms with a Tobin’s q between 1 and 3, partly because there

are so many firms that have values of Tobin’s q in this region.
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FIGURE V
Value Gains vs Tobin’s q. This graph plots the value gain distribution from moving to the undistorted
investment policies, as a function of Tobin’s q (horizontal axis). The value gain is scaled by the total.

7.4. The Investment-q Relationship

As is well known in the investment literature, the relationship between Tobin’s q and

investment is generally weak. One may wonder to what extent we replicate this weak

relationship in our model. Figure VI plots the investment rate against Tobin’s q. The

dotted line is the result from a linear regression of the investment rate on Tobin’s q. The

slope of the line (the investment-q slope) is 0.07 with an R2 value of 0.16. We can thus

conclude that our model replicates the weak investment-q relationship established in the

literature. This is important. It shows that we cannot conclude from weak investment-q

regression results that firm managers are not responding to mispricing. After all, our

model features mispricing which managers are by construction responding to.

26



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

2.5

Tobin’s q

In
ve

st
m

en
t R

at
e

 

 

Model
Regression Line in Model

FIGURE VI
Investment vs Tobin’s q. This graph plots the investment-q relationship in the model.
The line represents the fitted value of a linear regression of investment on Tobin’s q.

7.5. External Validity of the α Process

We chose to estimate our alpha process by matching the relation between Market-

to-Book deciles and alphas. As can be seen from the lower panel of Figure II we fit

the alphas generated by the book-to-market distribution quite well. We now evaluate

whether the estimated alpha process also generates investment (asset growth) alphas that

are consistent with the data. In Figure VII we plot the CAPM alpha generated by the

model and compare it to the data. The graph illustrates that our model also generates

investment alphas. These results suggest that Book-to-Market ratios and investment

are both noisy measures of alpha. As illustrated in the previous section, Tobin’s q

(i.e. inverted Book-to-Market) and investment are in fact not very highly correlated,

suggesting that firms in corresponding Book-to-Market and Investment deciles are not

the same. Yet, the one underlying exogenous alpha process that we estimated (targeting

value (BtM) alphas), does generate both anomalies in the model.
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FIGURE VII
Investment Alphas. The graph plots the CAPM alpha of investment-sorted decile
portfolios in the model and compares them to the data. As before, to purely fo-
cus on cross-sectional effects, both series are demeaned by their unconditional average.

7.6. Sensitivity Analysis

Persistence of the Alpha process. In this section we consider the sensitivity to

varying the persistence of the α-process. Changing the persistence of this Markov process

allows us to gauge how important the persistence of an anomaly is for the aggregate value

losses. Figure VIII plots the change in value as computed in Equation 24 for different

levels of persistence. The x-axis is the multiplier on the transition rates (hα+, hα−) of the

baseline parameterization by a factor that ranges between 0.7 and 2. When the multiplier

is 1, we obtain the baseline value loss of 10.6%. The graph shows that the value losses

are highly sensitive to the persistence of the anomaly, thereby confirming the intuition

that non-persistent anomalies, such as the momentum effect, are unlikely to have a large

effect on value added. On the other hand, if anomalies are more persistent than the value

premium effect, they can create very large real inefficiencies.
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FIGURE VIII
Changing α-state persistence. The graphs illustrate the effects of changing the persistence
of the α-state by multiplying the transition rates (hα+, hα−) of the baseline parameterization by
a factor [0.7, 2]. The first graph plots the present value of gains as measured by equation (24).

Debt mispricing In our current analysis we have assumed that the debt-portion of

the firm is equally mispriced as the equity portion. One may wonder whether our results

would change if we assumed that the debt portion was less affected by mispricing. Our

previous results suggest that value distortions are concentrated among high Tobin’s q

firms, which empirically also tend to have lower debt-to-value ratios as illustrated by

Panel D of Table 1. This suggests that our results may not be particularly sensitive to

assuming that debt is as mispriced as equity. We will address this issue explicitly in the

next version of this paper by targeting equity mispricing alone.

8. Conclusion

Cross-sectional stock pricing anomalies are a widely studied topic. A large fraction of

this literature exclusively focuses on the financial markets aspect of such anomalies, that

is, the implications of these anomalies for investors and price informativeness. Another

important fraction studies whether or not the first order conditions of the firm are consis-

tent with the observed financial returns and argues that even if the first order conditions

of consumers are not able to price assets appropriately, at least the investment behavior

of corporate managers seems more consistent with the observed return patterns.

Instead, this paper quantitatively evaluates the potential real economic implications
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of the documented pricing effects assuming that these effects represent financial market

imperfections. Taking as given that managers maximize the value of their firm as assessed

by the market, we estimate the joint dynamic distribution of firm characteristics that

have been linked to financial imperfections and other firm variables, such as investment,

capital, and output. Based on a model that matches these joint dynamics we then

evaluate the counterfactual dynamic distribution of capital, investment, and value added

absent financial market imperfections and find that they can cause large and persistent

deviations. This implies that financial intermediaries that can reduce and/or eliminate

such market imperfections can provide large value added to the economy. As such, our

paper contributes to the debate on the role and optimal size of the financial sector.

Even though we find that financial intermediaries can potentially add significant value

to the economy by resolving anomalies, we do not show that they are currently engaged

in that activity. In particular, we have shown that alphas are a poor measure of real

inefficiencies, implying simply chasing high alpha strategies, such as momentum, may

not be as important for real allocations. Further, it is unclear how large cross-sectional

anomalies would be absent these financial intermediaries. What is clear, is that using

Sharpe’s arithmetic to argue that financial intermediaries such as active mutual funds

do not add value to society is flawed. What our framework does allow us to evaluate is

how large and persistent cross-sectional anomalies absent financial intermediation need

to be, to justify their current size. Furthermore, there may be large aggregate (as op-

posed to cross-sectional) mispricings, that will further enhance the value that financial

intermediaries could add to the economy.
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A. Markov Matrices

Book-to-Market Sorted Portfolios

From/To Dec 1 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Dec 10
Dec 1 0.577 0.215 0.071 0.033 0.015 0.008 0.006 0.004 0.006 0.009
Dec 2 0.160 0.352 0.216 0.100 0.044 0.025 0.012 0.007 0.010 0.013
Dec 3 0.044 0.182 0.289 0.198 0.100 0.045 0.025 0.015 0.016 0.017
Dec 4 0.018 0.067 0.177 0.258 0.195 0.099 0.041 0.026 0.024 0.023
Dec 5 0.009 0.028 0.074 0.172 0.246 0.197 0.089 0.045 0.036 0.030
Dec 6 0.005 0.014 0.035 0.079 0.171 0.244 0.188 0.094 0.061 0.038
Dec 7 0.003 0.008 0.016 0.036 0.077 0.168 0.264 0.207 0.099 0.048
Dec 8 0.003 0.005 0.013 0.021 0.039 0.079 0.198 0.302 0.194 0.065
Dec 9 0.003 0.006 0.011 0.019 0.031 0.056 0.088 0.182 0.338 0.178
Dec 10 0.006 0.008 0.011 0.018 0.024 0.031 0.039 0.059 0.152 0.527

Profitability Sorted Portfolios
From/To Dec 1 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Dec 10
Dec 1 0.657 0.118 0.039 0.023 0.014 0.007 0.005 0.004 0.004 0.005
Dec 2 0.112 0.613 0.148 0.026 0.008 0.005 0.002 0.001 0.001 0.002
Dec 3 0.041 0.130 0.538 0.161 0.033 0.011 0.006 0.003 0.003 0.002
Dec 4 0.024 0.025 0.139 0.456 0.188 0.049 0.020 0.010 0.006 0.005
Dec 5 0.015 0.009 0.032 0.164 0.400 0.201 0.062 0.023 0.010 0.006
Dec 6 0.008 0.004 0.016 0.052 0.175 0.376 0.202 0.060 0.020 0.008
Dec 7 0.005 0.002 0.008 0.022 0.059 0.183 0.375 0.201 0.055 0.015
Dec 8 0.004 0.002 0.004 0.012 0.028 0.064 0.180 0.405 0.193 0.035
Dec 9 0.003 0.001 0.003 0.007 0.014 0.028 0.061 0.180 0.470 0.158
Dec 10 0.003 0.001 0.002 0.007 0.009 0.013 0.022 0.045 0.165 0.664

Investment Sorted Portfolios
From/To Dec 1 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Dec 10
Dec 1 0.275 0.138 0.075 0.055 0.040 0.037 0.038 0.039 0.046 0.085
Dec 2 0.156 0.179 0.135 0.095 0.072 0.060 0.054 0.051 0.045 0.048
Dec 3 0.084 0.135 0.163 0.137 0.103 0.085 0.070 0.056 0.047 0.041
Dec 4 0.057 0.098 0.130 0.151 0.129 0.107 0.084 0.070 0.057 0.043
Dec 5 0.047 0.073 0.102 0.132 0.153 0.133 0.109 0.078 0.068 0.045
Dec 6 0.044 0.063 0.085 0.103 0.131 0.150 0.130 0.101 0.076 0.053
Dec 7 0.040 0.062 0.072 0.085 0.107 0.132 0.150 0.131 0.099 0.064
Dec 8 0.044 0.056 0.059 0.073 0.092 0.105 0.136 0.160 0.128 0.086
Dec 9 0.056 0.058 0.061 0.063 0.068 0.080 0.099 0.140 0.185 0.132
Dec 10 0.098 0.073 0.063 0.058 0.055 0.058 0.068 0.091 0.141 0.227

Momentum Sorted Portfolios
From/To Dec 1 Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8 Dec 9 Dec 10
Dec 1 0.176 0.110 0.082 0.056 0.049 0.047 0.045 0.048 0.066 0.129
Dec 2 0.122 0.115 0.099 0.089 0.076 0.074 0.069 0.075 0.088 0.107
Dec 3 0.084 0.100 0.104 0.097 0.093 0.088 0.089 0.093 0.090 0.092
Dec 4 0.063 0.085 0.092 0.105 0.108 0.109 0.107 0.099 0.095 0.078
Dec 5 0.056 0.075 0.090 0.105 0.108 0.117 0.113 0.108 0.096 0.074
Dec 6 0.049 0.071 0.088 0.099 0.111 0.122 0.119 0.114 0.099 0.071
Dec 7 0.046 0.072 0.087 0.103 0.113 0.112 0.114 0.115 0.104 0.073
Dec 8 0.054 0.074 0.088 0.101 0.108 0.106 0.116 0.108 0.099 0.079
Dec 9 0.069 0.087 0.093 0.095 0.099 0.097 0.098 0.098 0.097 0.093
Dec 10 0.123 0.114 0.099 0.083 0.077 0.068 0.069 0.075 0.093 0.116

Table 4
Annual Markov Matrices of Decile Portfolios Sorted by Book-to-Market, Investment, Profitability and
Momentum.
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B. Proof: HJB Equation

The corresponding Hamilton-Jacobi-Bellman equation is given by:

0 = max
i+,i−≥0

[π(κ, z, Z, Y )− (rf (Z) + α(z, Z))V (κ, z, Z, Y )

+
i+

(e∆ − 1)
(V (κ+ 1, z, Z, Y )− V (κ, z, Z, Y ))

+
δ + i−

(1− e−∆)
(V (κ− 1, z, Z, Y )− V (κ, z, Z, Y ))

+ ΛZ(Z)V
Z(z, κ, Y ) + Λz(Z)V

z(Z, κ)

+ VAAµ(Z) +
1

2
VAAA

2σ(Z)2 − VAAσ(Z)ν(Z)], (25)

where VZ and Vz are vectors that collect the values of the function V evaluated at all

possible elements in the set ΩZ and Ωz, respectively.

C. Stationary Distribution

Let ms denote the mass of firms in state s = (κ, z, Z) and let m denote the corre-

sponding Ns × 1 vector, where Ns = Nκ ·NZ ·Nz. The vector that contains the fraction

of firms in each state s evolves according to:

d
( m

1′m

)
=

dm

1′m
− m

1′m

1′dm

1′m

We know that E[ m
1′m

] = p, where p is the vector unconditional probabilities ps = Pr[s].

Stationarity implies that if we were to initialize the system with a vector m̃ such that
m̃
1′m̃

= p then there would be no expected change in the distribution, that is:

E
[
d

(
m̃

1′m̃

)]
=0 (26)
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We can write:

E
[
d

(
m̃

1′m̃

)]
=E

[
dm

1′m̃
− m̃

1′m̃

1′dm

1′m̃

]
(27)

=(INs − p1′)
E [dm]

1′m̃
(28)

=(INs − p1′)Λ′ m̃

1′m̃
dt (29)

=(INs − p1′)Λ′pdt (30)

where E[dm] = Λ′m̃dt and where INs is an identity matrix of size Ns × Ns. Overall the

vector of probabilities p thus solves:

(Λ′ − INs1
′Λ′p)p = 0 (31)

The off-diagonal elements of the matrix Λ contain the (endogenous) rates Λ(s, s′) with

which firms transition from state s to s′. The diagonal element s of the matrix Λ contains

the sum of all flow rates of leaving state s and net-growth associated with entering and

exiting the system, that is:

Λ(s, s) = −
∑
s′ ̸=s

Λ(s, s′) + hentry(s)− hexit(s).

The condition 1′E[dm]
dt

= 1′Λ′m implies that, in expectation, there is no change in the

total mass of firms. If we impose that expected growth in the total mass of firm is always

zero, that is 1′Λ′m = 0 for all m, for example, if we set hentry(s)− hexit(s) = 0 for all s,

then we obtain the stationary cross-sectional distribution of firms by solving the linear

system: (
Λ′

1′

)
p =

(
0

1

)
. (32)

The vector of probabilities, p, is the left normalized eigenvector of Λ associated with the

eigenvalue 0.
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