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Abstract

One of the most important trends in modern macroeconomics is the shift from small

firms to large firms. At the same time, financial markets have been transformed by

advances in information technology. The goal of this project is to explore the hypothesis

that the use of big data in financial markets has lowered the cost of capital for large

firms, relative to small ones, enabling large firms to grow larger.As faster processors

crunch ever more data – macro announcements, earnings statements, competitors’

performance metrics, export demand, etc. – large firms become more valuable targets

for this data analysis. Large firms, with more economic activity and a longer firm

history. offer more data to process. Once processed, that data can better forecast firm

value, reduce the risk of equity investment, and thus reduce the firm’s cost of capital.

As big data technology improves, large firms attract a more than proportional share

of the data processing, enabling large firms to invest cheaply and grow larger.

∗We thank the Carnegie Rochester Committee for their support of this work. We also thank Nic Kozeniauskas for his
valuable assistance with the data and Adam Lee for his outstanding research assistance.



One of the main question in macroeconomics today is why small firms are being replaced

with larger ones. Over the last three decades, the percentage of employment at firms with

less than 100 employees has fallen from 40% to 35% (Figure 1a); the annual rate of new

startups has decreased from 13% to less than 8%, and the share of employment at young

firms (less than 5 years) has decreased from 18% to 8% (Davis and Haltiwanger, 2015).

While small firms have struggled, large firms (more than 1000 employees) have thrived: The

share of the U.S. labor force they employ has risen from one quarter in the 1980s, to about

a third today. At the same time, the revenue share of the top 5% of firms increased from

57% to 67% (Figure 1b).

Figure 1: Large Firms Growing Relatively Larger

The left panel uses the Business Dynamics Statistics data published by the Census Bureau
(from Kozeniauskas, 2017). It contains all firms with employees in the private non-farm sector
in the United States. The right panel uses Compustat/CRSP data. Top x% means the share
of all firm revenue earned by the x% highest-revenue firms.
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Figure 1: Average firm. Size is measured with the number of employees
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Figure 2: Size distribution of firms. Percentage of employment at firms in different size
categories. The size of a firm is measured by its number of employees.
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Figure 3: Average firm size holding the sectoral composition of firms fixed. The agriculture
and manufacturing sectors have been excluded. There are three different starting dates, 1978,
1988 and 1993. For each line the sectoral distribution is held fixed from the starting date.
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(b) Revenue % at firms in top sales percentile

One important difference between large and small firms is their cost of capital (Cooley

and Quadrini, 2001). Hennessy and Whited (2007) document that larger firms, with larger

revenues, more stable revenue streams, and more collateralizable equipment, are less risky

creditors and thus pay lower risk premia.1 But this explanation for the trend in firm size is

challenged by the fact that while small firms are more volatile, the volatility gap between

small firms and large firms cash flows has not grown.

1Other hypotheses are that the productivity of large firms has increased or that potential entrepreneurs
instead work for large firms. This could be because of globalization, or the skill-biased nature of technological
change as in Kozeniauskas (2017). These explanations are not exclusive and may each explain some of the
change in the distribution of firm size.
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If neither volatility nor covariance with market risk has diverged, how could risk premia

and thus the cost of capital diverge? What introduces a wedge between unconditional vari-

ance or covariance and risk is information. Even if the payoff variance is constant, better

information can make payoffs more predictable and therefore less uncertain. Given this new

data, the conditional payoff variance and covariance fall. More predictable payoffs lower

risk and lower the cost of capital. The strong link between information and the cost of

capital is supported empirically by Fang and Peress (2009), who find that media coverage

lowers the expected return on stocks that are more widely covered. This line of reasoning

points to an information-related trend in financial markets that has affected the abundance

of information about large firms relative to small firms. What is this big trend in financial

information? It is the big data revolution.

The goal of this project is to explore the hypothesis that the use of big data in financial

markets has lowered the cost of capital for large firms relative to small ones, enabling large

firms to grow larger. In modern financial markets, information technology is pervasive and

transformative. Faster and faster processors crunch ever more data: macro announcements,

earnings statements, competitors’ performance metrics, export market demand, anything

and everything that might possibly forecast future returns. This data informs the expecta-

tions of modern investors and reduces their uncertainty about investment outcomes. More

data processing lowers uncertainty, which reduces risk premia and the cost of capital, making

investments more attractive.

To explore and quantify these trends in modern computing and finance, we use a noisy

rational expectations model where investors choose how to allocate digital bits of information

processing power among various firm risks, and then use that processed information to solve

a portfolio problem. The key insight of the model is that the investment-stimulating effect

of big data is not spread evenly across firms. Large firms are more valuable targets for data

analysis because more economic activity and a longer firm history generates more data to

process. All the computing power in the world cannot inform an investor about a small

firm that has a short history with few disclosures. As big data technology improves, large

firms attract a more than proportional share of the data processing. Because data resolves

risk, the gap in the risk premia between large and small firms widens. Such an asset pricing

pattern enables large firms to invest cheaply and grow larger.

The data side of the model builds on theory designed to explain human information

processing (Kacperczyk et al., 2016), and embeds it into a standard model of corporate

finance and investment decisions (Gomes, 2001). In this type of model, deviations from
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Modigliani-Miller imply that the cost of capital matters for firms’ investment decisions. In

our model, the only friction affecting the cost of capital works through the information

channel. The big data allocation model can be reduced to a sequence of required returns for

each firm that depends on the data-processing ability and firm size. These required returns

can then be plugged into a standard firm investment model. To keep things as simple as

possible, we study the big-data effect on firms’ investment decision based on a simulated

sample of firms – two, in our case – in the spirit of Hennessy and Whited (2007).

The key link between data and real investment is the price of newly-issued equity. Assets

in this economy are priced according to a conditional CAPM, where the conditional variance

and covariance are those of a fictitious investor who has the average precision of all investors’

information. The more data the average investor processes about an asset’s payoff, the

lower is the asset’s conditional variance and covariance with the market. A researcher who

estimated a traditional, unconditional CAPM would attribute these changes to a relative

decline in the excess returns (alphas) on small firms. Thus, the widening spread in data

analysis implies that the alphas of small firm stocks have fallen relative to larger firms. These

asset pricing moments are new testable model predictions that can be used to evaluate and

refine big data investment theories.

This model serves both to exposit a new mechanism and as a framework for measurement.

Obviously, there are other forces that affect firm size. We do not build in many other

contributing factors. Instead, we opt to keep our model stylized, which allows a transparent

analysis of the new role that big data plays. Our question is simply how much of the change

in the size distribution is this big data mechanism capable of explaining? We use data in

combination with the model to understand how changes in the amount of data processed over

time affect asset prices of large and small public firms, and how these trends reconcile with

the size trends in the full sample of firms. An additional challenge is measuring the amount

of data. Using information metrics from computer science, we can map the growth of CPU

speeds to signal precisions in our model. By calibrating the model parameters to match the

size of risk premia, price informativeness, initial firm size and volatility, we can determine

whether the effect of big data on firms’ cost of capital is trivial or if it is a potentially

substantial contributor to the missing small firm puzzle.

Contribution to the existing literature Our model combines features from a few dis-

parate literatures. The topic of changes in the firm size distribution is a topic taken up

in many recent papers, including Davis and Haltiwanger (2015), Kozeniauskas (2017), and
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Akcigit and Kerr (2017). In addition, a number of papers analyze how size affects the cost

of capital, e.g. Cooley and Quadrini (2001), Hennessy and Whited (2007), and Begenau

and Salomao (2017). We explore a very different force that affects firm size and quantify its

effect.

Another strand of literature explores long run data or information trends in finance:

Asriyan and Vanasco (2014), Biais et al. (2015) and Glode et al. (2012) model growth in

fundamental analysis or an increase in its speed. The idea of long-run growth in information

processing is supported by the rise in price informativeness documented by Bai et al. (2016).

Over time, it has gotten easier and easier to process large amounts of data. As in Farboodi

et al. (2017), this growing amount of data reduces the uncertainty of investing in a given

firm. But the new idea that this project adds to the existing work on data and information

frictions, is this: Intensive data crunching works well to reduce uncertainty about large firms

with long histories and abundant data. For smaller firms, who tend also to be younger firms,

data may be scarce. Big data technology only reduces uncertainty if abundant data exists to

process. Thus as big data technology has improved, the investment uncertainty gap between

large and small firms has widened, their costs of financing have diverged, and big firms have

grown ever bigger.

1 Model

We develop a model whose purpose is to understand how the growth in big data technologies

in finance affects firm size and gauge the size of that effect. The model builds on the

information choice model in Kacperczyk et al. (2016) and Kacperczyk et al. (2015).

1.1 Setup

This is a repeated, static model. Each period has the following sequence of events. First,

firms choose entry and firm size. Second, investors choose how to allocate their data process-

ing across different assets. Third, all investors choose their portfolios of risky and riskless

assets. At the end of the period, asset payoffs and utility are realized. The next period, new

investors arrive and the same sequence repeats. What changes between periods is that firms

accumulate capital and the ability to process big data grows over time.

Firm Decisions We assume that firms are equity financed. Each firm i has a profitable

1-period investment opportunity and wants to issue new equity to raise capital for that
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investment. For every share of capital invested, the firm can produce a stochastic payoff fi.

Thus total firm output depends on the scale of the investment, which is the number of shares

x̄, and the output per share fi:

yi = x̄fi. (1)

The owner of the firm chooses how many shares x̄ to issue. The owner’s objective is to

maximize the revenue raised from the sale of the firm, net of the setup or investment cost

φ̃(x̄t) = φ01(|∆x̄t|>0) + φ1|∆x̄t|+ φ2(∆x̄t)
2, (2)

where ∆x̄t = x̄t − x̄t−1 and 1|∆x̄|>0 is an indicator function taking the value of one if |∆x̄| is

strictly positive. This cost function represents the idea that issuing new equity (or buying

equity back) has a fixed cost φ0 and a marginal cost that is increasing in the number of new

shares issued. Each share sells at price pt, which is determined by the investment market

equilibrium. The owner’s objective is thus

Evi = E[x̄tpt − φ̃(x̄t)|It−1], (3)

which is the expected net revenue from the sale of firm i.

The firm makes its choice conditional on the same prior information that all the investors

have and understanding the equilibrium behavior of investors in the asset market. But the

firm does not condition on p. In other words, it does not take prices as given. Rather, the

firm chooses x̄t, taking into account its impact on the equilibrium price.

Assets The model features 1 riskless and n risky assets. The price of the riskless asset is

normalized to 1 and it pays off r at the end of the period. Risky assets i ∈ {1, ..., n} have

random payoffs fit ∼ N(µ,Σ), where Σ is a diagonal “prior” variance matrix.2 We define

the n× 1 vector ft = [f1, f2, ..fn]′.

Each asset has a stochastic supply given by x̄i+xi, where noise xi is normally distributed,

with mean zero, variance σx, and no correlation with other noises: x ∼ N (0, σxI). As in any

(standard) noisy rational expectations equilibrium model, the supply is random to prevent

the price from fully revealing the information of informed investors.

2We can allow assets to be correlated. To solve a correlated asset problem simply requires constructing
portfolios of assets (risk factors) that are independent from each other, choosing how much to invest and learn
about these risk factors, and then projecting the solution back on the original asset space. See Kacperczyk
et al. (2016) for such a solution.
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Portfolio Choice Problem There is a continuum of atomless investors. Each investor is

endowed with initial wealth, W0.3 They have mean-variance preferences over end-of-period

wealth, with a risk-aversion coefficient, ρ. Let Ej and Vj denote investor j’s expectations and

variances conditioned on all interim information, which includes prices and signals. Thus,

investor j chooses how many shares of each asset to hold, qj to maximize period 2 expected

utility, U2j:

U2j = ρEj[Wj]−
ρ2

2
Vj[Wj] (4)

subject to the budget constraint:

Wj = rW0 + q′j(f − pr), (5)

where qj and p are n× 1 vectors of prices and quantities of each asset held by investor j.

Prices Equilibrium prices are determined by market clearing:∫
qjdj = x̄+ x, (6)

where the left-hand side of the equation is the vector of aggregate demand and the right-hand

side is the vector of aggregate supply of the assets.

Information sets, updating, and data allocation At the start of each period, each

investor j chooses the amount of data that she will receive at the interim stage, before she

invests. A piece of data is a signal about the risky asset payoff. A time-t signal, indexed

by l, about asset i is ηlit = fit + elit, were the data error elit is independent across pieces of

data l, across investors, across assets i and over time. Signal noise is normally distributed

and unbiased: elit ∼ N(0, σe/δ). By Bayes’ law, choosing to observe M signals, each with

signal noise variance σe/δ, is equivalent to observing one signal with signal noise variance

σe/(Mδ), or equivalently, precision Mδ/σe. The discreteness in signals complicates the

analysis, without adding insight. But if we have a constraint that allows an investor to

process M̄/δ pieces of data, each with precision δ/σe, and then we take the limit δ → 0, we

get a quasi-continuous choice problem. The choice of how many pieces of data to process

about each asset becomes equivalent to choosing Kij, the precision of investor j’s signal

about asset i. Investor j’s vector of data-equivalent signals about each asset is ηj = f + εj,

3Since there are no wealth effects in the preferences, the assumption of identical initial wealth is without
loss of generality.
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where the vector of signal noise is distributed as εj ∼ N (0,Σηj). The variance matrix Σηj

is diagonal with the ith diagonal element K−1
ij . Investors combine signal realizations with

priors and information extracted from asset prices to update their beliefs using Bayes’ law.

Signal precision choices {Kij}maximize start-of-period expected utility, U1j, of the fund’s

terminal wealth Wj. The objective is −E[lnEj[exp(−ρWj)]], which is equivalent to maxi-

mizing

U1j = E

[
ρEj[Wj]−

ρ2

2
Vj[Wj]

]
, (7)

subject to the the budget constraint (5) and three constraints in the information choices.4

The first constraint is the information capacity constraint. It states that the sum of the

signal precisions must not exceed the information capacity:

n∑
i=1

Kij,t ≤ Kt. (8)

In Bayesian updating with normal variables, observing one signal with precision Ki or two

signals, each with precision Ki/2, is equivalent. Therefore, one interpretation of the capacity

constraint is that it allows the manager to observe N signal draws, each with precision Ki/N ,

for large N . The investment manager then chooses how many of those N signals will be

about each shock.5

The second constraint is the data availability constraint. It states that the amount of

data processed about the future earnings of firm i cannot exceed the total data generated

by the firm. Since data is a by-product of economic activity, data availability depends on

the economic activity of the firm in the previous period. In other words, data availability in

time t is a function of firm size in t− 1.

Kij,t ≤ K̂(xi,t−1). (9)

This limit on data availability is a new feature of the model. It is also what links firm

size/age to the expected cost of capital. We assume that the data availability constraint

takes a simple, exponential form: K̂(xi,t−1) = αexp (βxi,t−1).

4See Veldkamp (2011) for a discussion of the use of expected mean-variance utility in information choice
problems.

5The results are not sensitive to the exact nature of the information capacity constraint. We could
instead specify a cost function of data processing c(K). The problem we solve is the dual of this cost
function approach. For any cost function, there exists a constraint value K such that the cost function
problem and the constrained problem yield identical solutions.
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The third constraint is the no-forgetting constraint, which ensures that the chosen preci-

sions are non-negative:

Kij ≥ 0 i ∈ {1, ..., n− 1, n} (10)

It prevents the manager from erasing any prior information to make room to gather new

information about another asset.

1.2 Equilibrium

To solve the model, we begin by working through the mechanics of Bayesian updating. There

are three types of information that are aggregated in posterior beliefs: prior beliefs, price

information, and (private) signals. We conjecture and later verify that a transformation of

prices p generates an unbiased signal about the risky payoffs, ηp = f+εp, where εp ∼ N(0,Σp),

for some diagonal variance matrix Σp. Then, by Bayes’ law, the posterior beliefs about f

are normally distributed with mean Ej[f ] = Σ̂j(Σ
−1
ηj ηj + Σ−1

p ηp) and posterior precision

Σ̂−1
j = Σ−1 + Σ−1

p + Σ−1
ηj . Posterior beliefs about asset payoffs are f ∼ N(Ej[f ], Σ̂−1

j ) where

Ej[f ] = Σ̂j(Σ
−1µ+ Σ−1

ηj ηj + Σ−1
p ηp). (11)

Next, we solve the model in four steps.

Step 1: Solve for the optimal portfolios, given information sets and issuance.

Substituting the budget constraint (5) into the objective function (4) and taking the

first-order condition with respect to qj reveals that optimal holdings are increasing in the

investor’s risk tolerance, precision of beliefs, and expected return:

qj =
1

ρ
Σ̂−1
j (Ej[f ]− pr). (12)

Step 2: Clear the asset market.

Substitute each agent j’s optimal portfolio (12) into the market-clearing condition (6).

Collecting terms and simplifying reveals that equilibrium asset prices are linear in payoff risk

shocks and in supply shocks:

Lemma 1. p = 1
r

(A+Bf + Cx)

A detailed derivation of coefficients A, B, and C, expected utility, and the proofs of this

lemma and all further propositions are in the Appendix.
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In this model, agents learn from prices because prices are informative about the asset

payoffs f . Next, we deduce what information is implied by Lemma 1. Price information

is the signal about f contained in prices. The transformation of the price vector p that

yields an unbiased signal about f is ηp ≡ B−1(pr − A). Note that applying the formula for

ηp to Lemma 1 reveals that ηp = f + εp, where the signal noise in prices is εp = B−1Cx.

Since we assumed that x ∼ N(0, σxI), the price noise is distributed εp ∼ N(0,Σp), where

Σp ≡ σxB
−1CC ′B−1′ . Substituting in the coefficients B and C from the proof of Lemma

1 shows that public signal precision Σ−1
p is a diagonal matrix with ith diagonal element

σ−1
pi =

K̄2
i

ρ2σx
, where K̄i ≡

∫
Kijdj is the average capacity allocated to asset i.

This market-clearing asset price reveals the firm’s cost of capital. We define the cost of

capital as follows.

Definition 1. The cost of capital for firm i is the difference between the (unconditional)

expected payout per share the firm will make to investors, minus the (unconditional) expected

price per share that the investor will pay to the firm: E[fi]− E[pi].

Because x is a mean-zero random variable and the payoff f has mean µ, the unconditional

expected price is E[pi] = 1/r(Ait + Bitµ). Therefore, the expected cost of capital for firm i

is (1−Bit/r)µ− Ait/r.
Step 3: Compute ex-ante expected utility.

Substitute optimal risky asset holdings from equation (12) into the first-period objective

function (7) to get: U1j = rW0 + 1
2
E1

[
(Ej[f ]− pr)Σ̂−1

j (Ej[f ]− pr)
]
. Note that the expected

excess return (Ej[f ]− pr) depends on signals and prices, both of which are unknown at the

start of the period. Because asset prices are linear functions of normally distributed shocks,

Ej[f ]−pr, is normally distributed as well. Thus, (Ej[f ]−pr)Σ̂−1
j (Ej[f ]−pr) is a non-central

χ2-distributed variable. Computing its mean yields:

U1j = rW0 +
1

2
trace(Σ̂−1

j V1[Ej[f ]− pr]) +
1

2
E1[Ej[f ]− pr]′Σ̂−1

j E1[Ej[f ]− pr]. (13)

Step 4: Solve for information choices.

Note that in expected utility (13), the choice variables Kij enter only through the pos-

terior variance Σ̂j and through V1[Ej[f ]− pr] = V1[f − pr]− Σ̂j. Since there is a continuum

of investors, and since V1[f − pr] and E1[Ej[f ] − pr] depend only on parameters and on

aggregate information choices, each investor takes them as given.

Since Σ̂−1
j and V1[Ej[f ]− pr] are both diagonal matrices and E1[Ej[f ]− pr] is a vector,

the last two terms of (13) are weighted sums of the diagonal elements of Σ̂−1
j . Thus, (13)
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can be rewritten as U1j = rW0 +
∑

i λiΣ̂
−1
j (i, i)− n/2, for positive coefficients λi. Since rW0

is a constant and Σ̂−1
j (i, i) = Σ−1(i, i) + Σ−1

p (i, i) +Kij, the information choice problem is:

max
K1j ,...,Knj≥0

n∑
i=1

λiKij + constant (14)

s.t.
n∑
i=1

Kij ≤ K (15)

Kij ≤ αexp (βxi,t−1) ∀i , ∀j (16)

where λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2
i σ̄

2
i , (17)

where σ̄−1
i =

∫
Σ̂−1
j (i, i)dj is the average precision of posterior beliefs about firm i. Its inverse,

average variance σ̄i is decreasing in K̄i. Equation (17) is derived in the Appendix.

This is not a concave objective, so a first-order approach will not find an optimal data

choice. To maximize a weighted sum (14) subject to an unweighted sum (15), the investor

optimally assigns all available data, as per (16), to the asset(s) with the highest weight. If

there is a unique i∗ = argmaxiλi, then the solution is to set Ki∗j = min(K,αexp (βxi,t−1)).

In many cases, after all data processing capacity is allocated, there will be multiple assets

with identical λ weights. That is because λi is decreasing in the average investor’s signal

precision. When there exist asset factor risks i, l s.t. λi = λl, then investors are indifferent

about which assets’ data to process. The next result shows that this indifference is not

a knife-edge case. It arises whenever the aggregate amount of data processing capacity is

sufficiently high.

Lemma 2. If x̄i is sufficiently large ∀i and
∑

i

∑
jKij ≥ K, then there exist risks l and l′

such that λl = λl′.

This is the big data analog to Grossman and Stiglitz (1980)’s strategic substitutability in

information acquisition. The more other investors know about an asset, the more informative

prices are and the less valuable it is for other investors to process data about the same asset.

If one asset has the highest marginal utility for signal precision, but capacity is high, then

many investors will learn about that asset, causing its marginal utility to fall and equalize

with the next most valuable asset data. With more capacity, the highest two λi’s will be

driven down until they equate with the next λ, and so forth. This type of equilibrium is

called a “waterfilling” solution (see, Cover and Thomas (1991)). The equilibrium uniquely

pins down which assets are being learned about in equilibrium, and how much is learned
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about them, but not which investor learns about which asset.

Step 5: Solve for firm equity issuance. How a firm chooses x̄ depends on how issuance

affects the asset price. Supply x̄ enters the asset price in only one place in the equilibrium

pricing formula, through At. From Appendix equation (32), we see that

A = µ− ρΣ̄x̄. (18)

x̄ has a direct effect on the second term. But also an indirect effect through information

choices that show up in Σ̄.

The firm’s choice of x̄ satisfies its first order condition:

E[p]− x̄
(
ρΣ̄− ρx̄∂Σ̄

∂x̄

)
− φ̃′(∆x̄) = 0 (19)

The first term is the benefit of more issuance. When a firm issues an additional share,

it gets expected revenue E[p] for that share. The second term tells us that issuance has a

positive and negative effect on the share price. The negative effect on the price is that more

issuance raises the equity premium (ρΣ̄ term). The positive price effect is that more issuance

makes data on the firm more valuable to investors. When investors process more data on

the firm, it lowers their investment risk, and on average, raises the price they are willing to

pay (∂Σ̄/∂x̄ term). This is the part of the firm investment decision that the rise of big data

will affect.

The third term, the capital adjustment cost (φ̃′(∆x̄)), reveals why firms grow in size over

time. Firms have to pay to adjust relative to their previous size. Since firms’ starting size

is small they want to grow, but rapid growth is costly. So, they grow gradually. Each time

a firm starts larger, choosing a higher x̄ becomes less costly because the size of the change,

and thus the adjustment cost is smaller.

2 Parameter Choice

In order to quantify the potential effect of big data on firm size, we need a calibrated model.

Our calibration strategy is to estimate our equilibrium price equation on recent asset price

and dividend data. By choosing model parameters that match the pricing coefficients, we

ensure that we have the right average price, average dividend, volatility and dividend-price

covariance at the simulation end point. What we do not calibrate to is the evolution of

these moments over time. The time path of price and price coefficients are over-identifying
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moments that we can use to evaluate model performance.

First, we describe the data used for model calibration. Next, we describe moments of the

data and the model that we match to identify model parameters. Most of these moments

come from estimating a version of our price equation (lemma 1).

Data We use two datasets that both come from CRSP. The first is the standard S&P 500

market capitalization index based on the US stock market’s 500 largest companies.6 The

dataset consists of the value-weighted price level of the index pt, and the value-weighted

return (pt + dt)/pt−1, where dt is dividends. Both are reported at a monthly frequency for

the period 1999.12-2015.12.

Given returns and prices, we impute dividends per share as

dt =

(
pt + dt
pt−1

− pt
pt−1

)
pt−1.

Both the price series and the dividend series are seasonally adjusted and exponentially de-

trended. As prices are given in index form, they must be scaled to dividends in a meaningful

way. The annualized dividend per share is computed for each series by summing dividends

in 12 month windows. Then, in the same 12-month window, prices are adjusted to match

this yearly dividend-price ratio.

Finally, because the price variable described above is really an index, and this index is

an average of prices, the volatility of the average will likely underestimate the true volatility

of representative stock prices. In order to find an estimate for price volatility at the asset

level, we construct a quarterly time series of the average S&P constituent stock price for the

period 2000-2015. Compustat gives us the S&P constituent tickets for each quarter. From

CRSP, we extract each company’s stock price for that quarter.

Moments Using the price data and implied dividend series, we estimate the linear price

equation in lemma 1. We let Cxt be the regression residuals. We can then map these At, Bt

and Ct estimates into the underlying model parameters τ−1
x , τ−1

0 , and µ , using the model

solutions (32), (33), and (34), as well as

6As a robustness check, we redo the calibration using a broader index: a composite of the NYSE, AMEX
and Nasdaq. This is a market capitalization index based on a larger cross-section of the market - consisting
of over 8000 companies (as of 2015). The results are similar. Moment estimates are within about 20% of each
other. This is close enough for the simulations to differ imperceptibly. Results are available upon request.
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V ar[pt] = B2
t Σ + C2

t σx. (20)

Of course, in the model, At, Bt and Ct take on different values, depending on how much

data is being processed at date t. So we need to choose a theoretical date t at which to

calibrate, which amounts to choosing a data processing level Kt. Therefore, we use the

empirical price coefficient estimates, along with the 2015 CPU speed estimate, to tell us the

model coefficients in 2015. We use solutions of the model to map these estimated coefficients

back into model parameters.7

Table 1: Parameters

µ τ−1
0 τ−1

x r φ0 φ1 φ2 ρ α β
15 0.55 0.5 0.10 0.598 0.091 0.0004 1.01 0.249 0.0002

Each period in the model is 1 year. The first three parameters in Table 1 are calibrated to

match the model and data values of the three equations above. This is an exactly identified

system. The riskless rate is set to match a 1% annual net return.

To calibrate firm investment costs, we use parameter estimates from Hennessy and

Whited (2007). Using annual data from 1988-2001, they estimate the cost of external in-

vestment funding as Λ(x) = φ0 + φ1 ∗ x̃+ φ2x̃
2, where x̃ is the amount raised. This amount

raised corresponds to the change in issuance ∆x̄ in our model. Their parameter estimates

for φ0, φ1, and φ2 are reported in Table 1.

The next parameter is risk aversion ρ. Risk aversion clearly matters for the level of the

risky asset price. But it is tough to identify. The reason for the difficulty is that if we

change risk aversion, and then re-calibrate the mean, persistence and variance parameters

to match price coefficients and variance at the new risk aversion level, the predictions of the

model are remarkably stable. Roughly, doubling variance and halving risk aversion mostly

just redefines units of risk. Therefore, we use the risk aversion ρ = 0.10 in what follows

and explore other values to show that the results do not depend on this choice. This ρ

implies a relative risk aversion that is 0.65, not particularly high. In the appendix, we show

an example of an alternative parameterization with even lower risk aversion, show how the

other parameters change, and show that it yields similar results. We explore variations in

other parameters as well.

7The current calibration does not hit all these targets accurately. We are continuing to work on improving
the fit. A future version will report metrics of model fit with the data targets.
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The data availability parameters α and β are chosen to give our mechanism a shot at

meaningful results. We choose parameters so that the constraint binds for small firms only,

for about the first decade. This pins both parameters to a narrow range. If this constraint

did not bind, there would be little difference between small and large firm outcomes. If

the availability constraint was binding for all firms, then there would be no effect of big

data growth because there would be insufficient data to process with the growing processing

power.

Figure 2: The evolution of processing performance over the period 1978–2007
Hennessy and Patterson (2011)

What changes exogenously at each date is the total information capacity Kt. We nor-

malize Kt = 1 in 1980 and then grow K at the average rate of growth of CPU speed, as

illustrated in Figure 2. We simulate the model in this fashion from 1980-2030.
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3 Quantitative Results

Our main results use the calibrated model to understand how the growth of big data affects

the evolution of large and small firms and how large that effect might be. We start by

exploring how the rise in big data availability changes how data is allocated. Then, we

explore how changes in data the investors observe affect the firm’s cost of capital. Finally,

we turn to the question of how much the change in data and the cost of capital affect the

evolution of firms that start out small and firms that start out large.

In presenting our results, we try to balance realism with simplicity, which illuminates the

mechanism. If we put in a large number of firms, it is, of course, more realistic. But this

would also make it harder to see what the trade-offs are. Instead, we characterize the firm

distribution with one representative large firm and one representative small firm. The two

firms are identical, except that the large firm starts off with a larger size x̄0 = 10, 000. The

small firm starts off with x̄0 = 2000. Starting in 1980, we simulate our economy with the

parameters listed in Table 1 with one period per year until 2030.

3.1 Data Allocation Choices

The reason that data choice is related to firm size is that small firms are young firms and

young firms do not have a long historical data series to process. Data comes from having an

observable body of economic transactions. A long history with a large amount of economic

activity generates this data. A small firm, which is one that has only recently entered, cannot

offer investors the data they need to accurately assess risk and return.

But the question is, how does the rise of investors’ ability to process big data interact

with this size effect? Since investors are constrained in how much data they can process

about young, small firms, the increase in data processing ability results in more data being

processed about the large firm. We can see this in Figure 3 where the share of data processed

on the large firm rises and the share devoted to the small firm falls (left panel). In the right

panel, we see that investors are not processing fewer bits of data about the small firm. In

fact, as the firm grows, little by little, more data is available. As more data is available,

more small firm data is processed and data precision rises.

Eventually, the small firm gets large enough and produces a long enough data history

that it outgrows its data availability constraint. The availability constraint was pushing data

choices for the two firms apart, creating the visual bump in Figure 3. As the constraint re-

laxes, the bump gives way to a slow, steady convergence. But, even once the data availability
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Figure 3: Investors’ Data Choices The left panel shows the share of the total data processed
for each firm. The right panel shows the number of bits processed about each firm.

constraint stops binding, investors still process more data on the larger firm. A secondary

effect of firm size is that data has more value when it is applied to a larger fraction of an

investor’s portfolio. An investor can use a data set to guide his investment of one percent of

the value of his portfolio. But he gains a lot more when he uses that data to guide investment

of fifty percent of his portfolio. Big assets constitute more of the value share of the average

investor’s portfolio. Therefore, information about big assets is more valuable.

Mathematically, we can see firm size x̄ enter in the marginal value of information λ in

(17). Of course, this firm size is the firm’s final size that period. But the final size is linked

to the firm’s initial size through the adjustment cost (2). Firms that are initially larger will

have a larger final size because size adjustment is costly. This larger final size is what makes

λ, the marginal value of data, higher.

In the limit, the small firm keeps growing faster than the large firm and eventually catches

up. When the two firms approach the same size, the data processing on both converges to

an equal, but growing amount of data processing.

3.2 Capital costs

The main effect of data is to systematically reduce a firm’s average cost of capital. Recall that

the capital cost is the expected payoff minus the expected price of the asset (Definition 1).

Data does not change the firm’s payoff, but it does change how a share of the firm is priced.

The systematic difference between expected price and payoff is the investor’s compensation
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for risk. Investors are compensated for the fact that firm payoffs are unknown, and therefore

buying a share requires bearing risk. The role of data is to help the investor predict that firm

payoff. In doing so, data reduces the compensation for risk. Just like a larger data set lowers

the variance of an econometric estimate, more data in the model reduces the conditional

variance of estimated firm payoffs. An investor who has a more accurate estimate is less

uncertain and bears less risk from holding the asset. The representative investor is willing

to pay more, on average, for a firm that they have good data on. Of course, the data might

reveal problems at the firm that lower the investor’s valuation of it. But on average, more

data is neither to reveal positive nor negative news. What data does on average improve is

the precision and resolution of risk. Resolving the investors’ risk reduces the compensation

the firm needs to pay the investor for bearing that risk, which reduces the firm’s cost of

capital.

Figure 4: Cost of Capital for a New Firm The sold line represents the cost of capital per
share, E[f ]− E[p], normalized by average earnings per share, E[f ], of the small firm (x̄0 = 2000). The
dashed line is the (normalized) cost of capital of the large firm (x̄0 = 10000). Simulations use parameters
listed in Table 1.

Figure 4 shows how the large firm, with its more abundant data, has a higher price and

lower cost of capital. But this effect is not always smooth. It is not true that more data

reduces the cost of capital evenly and proportionately. There is a second force at play here.

The second force is that firm size matters. Large firms require investors to hold more of their
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risk. In CAPM-speak, they have a higher beta. Large firm returns are more correlated with

the market return simply because they are more of the market. To induce investors to hold a

small amount of a risk is cheap. They can easily diversify it. But to induce investors to hold

lots of a risk, the compensation per unit of risk must rise. Thus, because they have more

equity outstanding and are more highly correlated with market risk, a large firm with the

same volatility and conditional variance as a small firm, would face a higher cost of capital.

As firm size and data evolve together, initially, data dominates. The cost of capital

for the large firm falls, from around 50% of earnings per share to close to 1%, because

more processing power is reducing the risk of investing in that firm. The small firm cannot

initially benefit much from higher processing power because it is a young firm and has little

data available to process. As the small firm grows older, the data availability constraint

loosens, investors can learn from the firm’s track record, risk falls and the cost of capital

comes back down. Where the two lines merge is where the small firm finally out-grows

its data availability constraint. From this point on, the only constraint on processing data

on either firm is the total data processing power K. The large and small firms evolve

similarly. The only difference between the two firms, after the inflection point where the

data availability constraint ceases to bind, is that the small firm continues to have a slightly

smaller accumulated stock of capital. Because the small firm continues to be slightly smaller,

it has slightly less equity outstanding, and a slightly lower cost of capital. But, when data

is abundant, small and large firms converge gradually over time.

3.3 The Evolution of Firms’ Size

In order to understand how big data has changed the size of firms, it is useful to look at how

a large firm and a small firm evolve in this economy. Then, we turn off various mechanisms

in the model to understand what role is played by each of our key assumptions. Once the

various mechanisms are clear, we contrast firm evolution in the 1980’s to the evolution of

firms in the post-2000 period.

Recall that firms have to pay to adjust, relative to their previous size. Since firms’

starting size is small, but rapid growth is costly, firms grow gradually. Figure 5 shows that

both the large and small firms grow. However, the rates at which they grow differ. One

reason growth rates differ is that small firms are further from their optimal size. If this were

the only force at work, small firms would grow by more each period and that growth rate

would gradually decline for both firms, as they approach their optimal size.

Instead, Figure 5 reveals that small firms sometimes grow faster and sometimes slower
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Figure 5: The Evolution of Small and Large Firms (level and growth rate) These
figures plot firm size x̄t (left) and growth in firm size, ln(x̄t) − ln(x̄t−1) (right), for a small firm, with
starting size 2000 and a large firm with starting size 10000. Simulation parameters are those listed in
Table 1.

than their large firm counterparts. For much of the start of their life, the small firms grow

more slowly than the large firms do. These variations in growth rates are due to investors’

data processing decisions. This is the force that can contribute to the change in the size of

firms.

The level of the size can be interpreted as market capitalization, divided by the expected

price. Since the average price ranges from 7 to 15 in this model, these are firms with zero

to 12 million dollars of market value outstanding. In other words, these are not very large

firms.

The Role of Growing Big Data Plotting firm outcomes over time as in Figure 5 conflates

three forces, all changing over time. The first thing changing over time is that firms are

accumulating capital and growing bigger. The second change is that firms are accumulating

longer data histories, which makes more data for processing available. The third change is

that technology enables investors to process more and more of that data over time. We want

to understand how each of these contributes to our main results. Therefore, we turn off

features of the model one-by-one, and compare the new results to the main results, in order

to understand what role each of these ingredients plays.

To understand the role that improvements in data processing play, we turn off the growth

of big data and compare results. We fix Kt = 5 ∀t. Data processing capacity is frozen at

its 1985 level. Firms still have limited data histories and still accumulate capital. Figure 6
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Figure 6: Without Improvements in Data Processing, Firm Size Converges These
results use the same simulation routine and parameters to plot the same quantities as in Figure 5. The
only difference is that these results hold data processing capacity fixed at Kt = 5 ∀t.

shows that this small change in the model has substantial consequences for firm dynamics.

Comparing Figures 5 and 6, we can see the role big data plays. In the world with fixed

data processing, instead of starting with rapid growth and growing faster as data processing

improves, the large firm growth rate starts at the same level as before, but then steadily

declines as the firm approaches is stationary optimal size. We learn that improvements in

data processing are the sources of firm growth in the model and are central to the continued

rapid growth of large firms.

The Role of Limited Data History One might wonder, if large firms attract more data

processing, is that alone producing larger big firms? Is the assumption that small firms have

a limited data history really important for the results? To answer this question, we now turn

off the assumption of limited data history. We maintain the growing data capacity and firm

capital accumulation from the original model.

Figure 7 reports results for the model with unlimited firm data histories, but limited

processing power, to the full model. Comparing Figures 5 and 7, we can see the difference

that data availability makes. In the world where firms have unlimited data histories, small

firms quickly catch up to large firms. There is no persistent difference in size. Small firms are

far below their optimal size. So they invest rapidly. Investment makes them larger, which

increases data processing immediately. Quickly, the initially small and large firms become

indistinguishable. Adjustment costs are a friction preventing immediate convergence. But it

is really the presence of the data availability constraint that creates the persistant difference
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Figure 7: With Unlimited Data Histories, Small and Large Firms Converge
Quickly. These results use the same simulation routine and parameters to plot the same quanti-
ties as in Figure 5. The only difference is that these results set the data availability parameters (α, β)
to be large enough that the data availability constraint never binds.

between firms with different initial size.

Small and Large Firms in the New Millennium So far, the experiment has been

to drop a small firm and a large firm in the economy in 1980 and watch how they evolve.

While this is useful to explaining the model’s main mechanism, it does not really answer the

question of why small firms today struggle more than in the past and why large firms today

are larger than the large firms of the past. To answer these questions, we really want to

compare small and large firms that enter the economy today to small and large firms that

entered in 1980.

To do this small vs. large, today vs. 1980 experiment, we use the same parameters as in

Table 1 and use the same starting size for firms. The only difference is that we start with

more available processing power. Instead of starting Kt at 1, we start it at the 2000 value,

which is about 1,000.

Each panel of figure 8 shows the growth rate of a large firm, minus the growth rate of a

small firm. In the left panel, both firms start in 1980, when data processing capacity was

quite limited. In the right panel, both firms enter in the year 2000, when data is abundant.

In both cases, the difference is positive for most of the first decade, meaning that large firms

grow faster than small ones. But in 2000, the difference is much more positive. Relative

to small firms, large firms grow much more quickly. The difference in 2000 growth rates

is nearly twice as large. In both cases, a surviving small firm eventually outgrows its data
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Figure 8: Large Firms Grow Faster in 2000 than in 1980. Both panels plot a difference in
the growth rate of size (ln(x̄t)− ln(x̄t−1)). The difference is the growth rate of a large firm (x̄t starting
at 10,000) minus the growth rate of a small firm (x̄t starting at 2000). Both are the result of simulations
using parameters in Table 1. The left panel shows the difference in firm growth for firms that start in
1980, with K1980 = 1. The right panel shows the difference in firm growth for firms that start in 1980,
with K2000 = 1000.

availability problem, grows quickly, and then converges to the growth rate of the large firm

(differences converge to 0).

Of course, in a model with random shocks and exit, many of these small firms would

not survive. In a world where large firms gain market share much more rapidly, survival

would be all the more challenging. This illustrates how the fact that data processing is more

advanced now than in the past may contribute in a substantial way to the puzzle of missing

small firms.

For comparison, we examine the growth rates of large and small firms in the U.S. pre-

1980 and in the period 1980-2007. We end in 2007 so as to avoid measuring real effects of

the financial crisis. For each industry sector and year, we select the top 25% largest firms in

Compustat and call those large firms and select the bottom half of the firm size distribution

to be our small firms. Within these two sets of firms, we compute the growth rates of various

measures of firm size and average them, with an equal weight given to each firm. Then, just

as in the model, we subtract the growth rate of large firms from that of small firms. For

most measures, small firms grow more slowly, and that difference grows later in the sample.

At times, the magnitudes of the model’s growth rates are quite large, compared to the

data. Of course, the data is averaged over many years and many firms at different points in

their life cycle. This smooths out some of the extremes in the data. If we average the firm

growth in our model from 1980-1985, for firms that enter in 1980, we get 39.5% for large
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Table 2: Large Firm Growth Minus Small Firm Growth from Compustat
For each industry sector and year, large firms are the top 25% largest firms in Compustat; small firms
are the bottom half of the firm size distribution. Growth rate is the annual log-difference. Reported
figures are equal-weighted averages of growth rates over firms and years.

prior to 1980 1980 - 2007

Assets 2.1% 8.2%
Investment 14.2% 16.0%
Assets with Intangibles 0.3% 1.1%
Capital Stock -0.9% 3.7%
Sales 1.4% 2.4%
Market Capitalization 1.1% 8.9%

firms and 7.3% for small firms, a difference of 32.2%. If we average the firm growth in our

model from 2000-2005, for firms that enter in 2000, we get 59.9% for large firms and 7.3%

for small firms, a difference of 52.6%.

While it is not unheard of for a small firm to double in size, some of this magnitude

undoubtedly reflects some imprecision of our current calibration. A larger adjustment cost,

or some labor hiring delay, would help to moderate the extremes of firm size growth. The

results also miss many aspects of the firm environment that have changed in the last four

decades. The type of firms entering in the last few years are quite different than firms of

past years. They have different sources of revenue and assets that might be harder to value.

Firm financing has changed, with a shift toward internal financing. Venture capital funding

has become more prevalent and displaced equity funding for many firms, early in their life

cycle. All of these forces would moderate the large effect we document here.

Our results only show that big data is a force with some potential. There is a logical way

in which the growth of big data and the growth of large firms is connected. This channel

has the potential to be quantitatively powerful. The role of big data in firms is thus a topic

ripe for further exploration.

4 Conclusion

Big data is transforming the modern economy. While many economists have used big data,

fewer think about how the use of data by others affects market outcomes. This paper starts to

explore the ways in which big data might be incorporated in modern economic and financial

theory. One way that big data is used is to help financial market participants make more
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informed choices about the firms in which they invest. These investment choices affect the

prices, cost of capital, and investment decisions of these firms. We set up a very simple

model to show how such big data choices might be incorporated and one way in which the

growth of big data might affect the real economy. But this is only a modest first step.

One might also consider how firms themselves use data, to refine their products, to

broader their customer market, or to increase the efficiency of their operations. Such data,

produced as a by-product of economic activity, might also favor the large firms whose abun-

dant economic activity produces abundant data.

Another step in a big-data agenda would be to consider the sale of data. In many

information models, we think of signals that are observed and then embedded in one’s

knowledge, not easily or credibly transferrable. However data is an asset that can be bought,

sold and priced on a market. How does the rise of markets for data change firms choices,

investments, evolution and their valuations as firms? If data is a storable, sellable, priced

asset, then investment in data should be valued just as if it were investment in a physical

asset. Understanding how to price data as an asset might help us to better understand the

valuations of new-economy firms and better measure aggregate economic activity.
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A Proofs

A.1 Useful notation, matrices and derivatives

All the following matrices are diagonal with ii entry given by:

1. Average signal precision: (Σ̄−1
η )ii = K̄i, where K̄i ≡

∫
Kijdj.

2. Precision of the information prices convey about shock i: (Σ−1
p )ii =

K̄2
i

ρ2σx
= σ−1

ip

3. Precision of posterior belief about shock i for an investor j is σ̂−1
ij , which is equivalent to

(Σ̂−1
j )ii = (Σ−1 + Σ−1

ηj + Σ−1
p )ii = σ−1

i +Kij +
K̄2
i

ρ2σx
= σ̂−1

ij (21)

4. Average posterior precision of shock i: σ̄−1
i ≡ σ−1

i + K̄i +
K̄2

i

ρ2σx
. The average variance is therefore

Σ̄ii = [
(
σ−1
i + K̄i +

K̄2
i

ρ2σx

)
]−1 = σ̄i.

5. Ex-ante mean and variance of returns: Using Lemma 1 and the coefficients given by (??), we can
write the return as:

f − pr = (I −B)f − Cx−A

= Σ̄

[
Σ−1f + ρ

(
I +

1

ρ2σx
Σ̄−1′

η

)
x

]
+ ρΣ̄x̄.

This expression is a constant plus a linear combination of two normal variables, which is also a normal
variable. Therefore, we can write

f − pr = V 1/2u+ w, (22)

where u is a standard normally distributed random variable u ∼ N(0, I), and w is a non-random
vector measuring the ex-ante mean of excess returns

w ≡ ρΣ̄x̄. (23)

and V is the ex-ante variance matrix of excess returns:

V ≡ Σ̄

[
Σ−1 + ρ2σx

(
I +

1

ρ2σx
Σ̄−1′

η

)(
I +

1

ρ2σx
Σ̄−1′

η

)′]
Σ̄

= Σ̄

[
Σ−1 + ρ2σx

(
I +

1

ρ2σx
(Σ̄−1′

η + Σ̄−1
η ) +

1

ρ4σ2
x

Σ̄−1′

η Σ̄−1
η

)]
Σ̄

= Σ̄

[
Σ−1 + ρ2σxI + (Σ̄−1′

η + Σ̄−1
η ) +

1

ρ2σx
Σ̄−1′

η Σ̄−1
η

]
Σ̄

= Σ̄
[
ρ2σxI + Σ̄−1′

η + Σ−1 + Σ̄−1
η + Σ−1

p

]
Σ̄

= Σ̄
[
ρ2σxI + Σ̄−1′

η + Σ̄−1
]

Σ̄.

The first line uses E[xx′] = σxI and E[ff ′] = Σ, the fourth line uses (35) and the fifth line uses
Σ̄−1 = Σ−1 + Σ−1

p + Σ̄−1
η .

This variance matrix V is a diagonal matrix. Its diagonal elements are:

Vii = (Σ̄
[
ρ2σxI + Σ̄−1

η + Σ̄−1
]

Σ̄)ii

= σ̄i[1 + (ρ2σx + K̄i)σ̄i]. (24)
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A.2 Solving the Model

Step 1: Portfolio Choices From the FOC, the optimal portfolio is chosen by investor j is

qj =
1

ρ
Σ̂−1
j (Ej [f ]− pr) (25)

where Ej [f ] and Σ̂j depend on the skill of the investor.
Next, we compute the portfolio of the average investor.

q̄ ≡
∫
qjdj =

1

ρ

∫
Σ̂−1
j (Ej [f ]− pr)dj

=
1

ρ

(∫
Σ−1
ηj ηjdj + Σ−1

p ηp + Σ̄−1(µ− pr)
)

=
1

ρ

(
Σ̄−1
η f + Σ−1

p ηp + Σ̄−1(µ− pr)
)
, (26)

where the fourth equality uses the fact that average noise of private signals is zero.

Step 2: Clearing the asset market and computing expected excess return Lemma
1 describes the solution to the market-clearing problem and derives the coefficients A, B, and C in the pricing
equation. The equilibrium price, along with the random signal realizations determines the interim expected
return (Ej [f ] − pr). But at the start of the period, the equilibrium price and one’s realized signals are not
known. To compute beginning-of-period utility, we need to know the ex-ante expectation and variance of
this interim expected return.

The interim expected excess return can be written as: Ej [f ]− pr = Ej [f ]− f + f − pr and therefore its
variance is:

V1[Ej [f ]− pr] = V1[Ej [f ]− f ] + V1[f − pr] + 2Cov1[Ej [f ]− f, f − pr]. (27)

Combining (11) with the definitions ηj = f + εj and ηp = f + εp, we can compute expectation errors:

Ej [f ]− f = Σ̂j

[
(Σ−1

ηj + Σ−1
p − Σ̂−1

j )f + Σ−1
ηj εj + Σ−1

p εp

]
= Σ̂j

[
−Σ−1f + Σ−1

ηj εj + Σ−1
p εp

]
.

Since this is a sum of mean-zero variables, its expectation is E1[Ej [f ]− f ] = 0 and its variance is V1[Ej [f ]−
f ] = Σ̂j

[
Σ−1 + Σ−1

ηj + Σ−1
p

]
Σ̂′j = Σ̂j .

From (22) we know that V1[f−pr] = V . To compute the covariance term, we can rearrange the definition
of ηp to get pr = Bηp +A and ηp = f + εp to write

f − pr = (I −B)f −A−Bεp (28)

= ρΣ̄x̄+ Σ̄Σ−1f − (I − Σ̄Σ−1)εp (29)

where the second line comes from substituting the coefficients A and B from Lemma 1. Since the constant
ρΣ̄x̄ does not affect the covariance, we can write

Cov1[Ej [f ]− f, f − pr] = Cov[−Σ̂jΣ
−1f + Σ̂jΣ

−1
p εp, Σ̄Σ−1f − (I − Σ̄Σ−1)εp]

= −Σ̂jΣ
−1ΣΣ̄Σ−1 − Σ̂jΣ

−1
p Σp(I − Σ̄Σ−1)]

= −Σ̂jΣ̄Σ−1 − Σ̂j(I − Σ̄Σ−1) = −Σ̂j

Substituting the three variance and covariance terms into (27), we find that the variance of excess return is
V1[Ej [f ]− pr] = Σ̂j + V − 2Σ̂j = V − Σ̂j . Note that this is a diagonal matrix. Substituting the expressions
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(24) and (21) for the diagonal elements of V and Σ̂j we have

V1[Ej [f ]− pr] = (V − Σ̂j)ii = (σ̄i − σ̂i) + (ρ2σx + K̄i)σ̄
2
i

In summary, the excess return is normally distributed as Ej [f ]− pr ∼ N (w, V − Σ̂j).

Step 3: Compute ex-ante expected utility Ex-ante expected utility for investor j is U1j =

E1

[
ρEj [Wj ]− ρ2

2 Vj [Wj ]
]
. In period 2, the investor has chosen his portfolio and the price is in his information

set, therefore the only payoff-relevant, random variable is f . We substitute the budget constraint in the
optimal portfolio choice from (25) and take expectation and variance conditioning on Ej [f ] and Σ̂j to obtain

U1j = ρrW0 + 1
2E1[(Ej [f ]− pr)′Σ̂j(Ej [f ]− pr)].

Define m ≡ Σ̂
−1/2
j (Ej [f ]− pr) and note that m ∼ N (Σ̂

−1/2
j w, Σ̂−1

j V − I). The second term in the Uij is
equal to E[m′m], which is the mean of a non-central Chi-square. Using the formula, if m ∼ N (E[m], V ar[m]),
then E[m′m] = tr(V ar[m]) + E[m]′E[m], we get

U1j = ρrW0 +
1

2
tr(Σ̂−1

j V − I) +
1

2
w′Σ̂−1

j w.

Finally, we substitute the expressions for Σ̂−1
j and w from (21) and (23):

U1j = ρrW0 −
N

2
+

1

2

N∑
i=1

(
σ−1
i +Kij +

K̄2
i

ρ2σx

)
Vii +

ρ2

2

N∑
i=1

x̄2
i σ̄

2
i

(
σ−1
i +Kij +

K̄2
i

ρ2σx

)

=
1

2

N∑
i=1

Kij [Vii + ρ2x̄2
i σ̄

2
i ] + ρrW0 −

N

2
+

1

2

N∑
i=1

(
σ−1
i +

K̄2
i

ρ2σx

)
[Vii + ρ2x̄2

i σ̄
2
i ]

=
1

2

N∑
i=1

Kijλi + constant (30)

λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2
i σ̄

2
i (31)

where the weights λi are given by the variance of expected excess return Vii from (24) plus a term that
depends on the supply of the risk.

Step 4: Information choices The attention allocation problem maximizes ex-ante utility in (30)
subject to the information capacity, data availability and no-forgetting constraints (15), (16) and (10).
Observe that λi depends only on parameters and on aggregate average precisions. Since each investor has
zero mass within a continuum of investors, he takes λi as given. Since the constant is irrelevant, the optimal
choice maximizes a weighted sum of attention allocations, where the weights are given by λi (equation (17)),
subject to a constraint on an un-weighted sum. This is not a concave objective, so a first-order approach
will not deliver a solution. A simple variational argument reveals that allocating all capacity to the risk(s)
with the highest λi achieves the maximum utility. For a formal proof of this result, see Van Nieuwerburgh
and Veldkamp (2010). Thus, the solution is given by: Kij = K if λi = maxk λk, and Kij = 0, otherwise.
There may be multiple risks i that achieve the same maximum value of λi. In that case, the manager is
indifferent about how to allocate attention between those risks. We focus on symmetric equilibria.

A.3 Proofs

Proof of Lemma 1
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Proof. Following Admati (1985), we know that the equilibrium price takes the following form pr = A+Bf+
Cx where

A = µ− ρΣ̄x̄ (32)

B = I − Σ̄Σ−1 (33)

C = −ρΣ̄

(
I +

1

ρ2σx
Σ̄−1′

η

)
(34)

and therefore the price is given by pr = µ+ Σ̄
[
(Σ̄−1 − Σ−1)(f − µ)− ρ(x̄+ x)− 1

ρσx
Σ̄−1′

η x
]
. Furthermore,

the precision of the public signal is

Σ−1
p ≡

(
σxB

−1CC ′B−1′
)−1

=
1

ρ2σx
Σ̄−1′

η Σ̄−1
η (35)

Proof of Lemma 2 See Kacperczyk et. al (2016).
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