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Abstract

In this paper, we show that within the set of stochastic three-period-
lived OLG economies with productive assets (such as land), markets
are necessarily sequentially incomplete, and agents in the model do
not share risk optimally. We start by characterizing perfect risk shar-
ing and �nd that it requires a state-dependent consumption claims
which depend only on the exogenous shock realizations. We show then
that the recursive competitive equilibrium of any overlapping genera-
tions economy with weakly more than three generations is not strongly
stationary. This then allows us to show directly that there are short-
run Pareto improvements possible in terms of risk-sharing and hence,
that the recursive competitive equilibrium is not Pareto optimal. We
then show that a �nancial reform which eliminates the equity asset
and replaces it with zero net supply insurance contracts (Arrow secu-
rities) will implement to Pareto optimal stochastic steady-state known
to exist in the model. Finally, we also show via numerical simu-
lations that a system of government taxes and transfers can lead to
a Pareto improvement over the competitive equilibrium in the model.
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1 Introduction

The issue of systematic risk has been central in the recent discussion of the
2008 �nancial market meltdown and the subsequent steep decline in real
economic activity. Indeed, a key fact of the crisis was that none of the
so-called �nancial innovations meant to help diversity risk � the securiti-
zation of long-term debt contracts and the various hedging and insurance
instruments meant to backstop these contracts �were e¤ective in prevent-
ing the market meltdown that occurred when housing prices fell. From
an economic perspective, this exposure of the economy to such systematic
risk was likely the result of a fundamental market incompleteness that is
not captured (and indeed, cannot be captured) in conventional real business
cycle macroeconomic models, where the �rst welfare theorem is known to
be valid.

This failing has led a number of economists to examine models in which
frictions such as imperfect competition or market incompleteness lead to vi-
olations of the �rst welfare theorem. A key development in this respect has
been the large and growing literature on endogenous market incompleteness
based on informational frictions �primarily involving costly monitoring of
states or problems of moral hazard or adverse selection (see Sleet [19] for
a survey of these models). These models derive constrained optimal gen-
eral equlibrium allocations in which the binding of incentive constraints can
lead to deviations from the �rst-best risk-sharing that occurs in a standard
RBC framework. As such, these models have provided some insights into
how government interventions might improve on market allocations. The
constrained optimality of the allocations that result in these models is some-
thing of a drawback, however, since it implies that there can be no policies
that will improve on the allocations in the model short of actually removing
the friction that leads to the market incompleteness to begin with.

In this paper, we show that endogenous market-incompleteness can result
in an overlapping generations framework without any informational frictions,
solely due to the structure of the �nancial markets, and, in particular, the
nature of the assets traded. Speci�cally, we show that the presence of a
productive asset (such as land or a Lucas tree) in positive net supply in an
otherwise standard stochastic exchange environment leads to sequentially
incomplete markets and ine¢ cient risk-sharing. Based on this result, we
then show that a �nancial reform which replaces the positive net supply
asset with a set of insurance contracts in zero net supply generates a strict
Pareto improvement on the liassez-faire competitive equilibrium allocation.
Actually implementing this reform requires the somewhat drastic step of
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having the government con�scate and redistribute the dividends associated
with the productive asset, so we also examine (via simulations) the e¤ects of
government tax and transfer schemes and show that these can also generate
Pareto improvements.

The remainder of the paper is organized as follows. Section 2 reviews the
literature on optimality and overlapping generations models. In Section 3
we lay out the three-period-lived OLG model and show some basic results on
competitive equilibrium in the model. Section 4 derives our main theoretical
results on the optimality of competitive equilibrium in the model. Section 5
provides a numerical example of these results. In Section 6 we examine the
Pareto improvements associated �rst with �nancial reform, and then with
respect to taxes and transfers. Section 7 provides a brief overview of the
empirical implications of the model and evidence in the data of the kinds of
e¤ects the model predicts. Finally, Section 8 concludes.

1.1 Literature

Economists have been concerned with the optimality of competitive equilib-
rium allocations in dynamic, stochastic economies since the �rst discovery
that dynamic economies can exhibit phenomena that lead to competitive
allocations which are not Pareto optimal. The Cass criterion provides a
way for determining whether an allocation is suboptimal �generally due to
capital overaccumulation �in the context of the neo-classical growth model
using the competitive equilibrium prices associated with the allocation (Cass
[6]). Gale [12] examined the optimality properties of competitive equilib-
rium allocations in the overlapping generations model and found that when
the intertemporal marginal rate of substitution was greater than one (which
he dubbed the "classical case"), the competitive allocation was dynamically
Pareto optimal, but when the MRS was less than one (which he dubbed
the "Samuelsonian case"), there could exist competitive equilibria whose
allocations were not optimal.

In the context of overlapping generations models, most analyses of the
welfare properties of equilibrium have been undertaken in the context of the
simplest version of the model in which agents live two periods, and trade a
single good, generally called �consumption�. The earliest examination of
welfare properties in stochastic models were by Muench [17], Peled [18], and
Aiyagari and Peled [2]. In the simple model, one can show that stochastic
steady-state competitive equilibria are strongly stationary, in the sense that
endogenously determined variables are functions of the exogenous shocks
alone. Hence, for models in which the exogenous shock is taken to have
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�nite support, the model can be analyzed using standard �nite-dimensional
vector space techniques. The Peled and Aiyagari and Peled papers exploit
this fact to show that if the competitive equilibrium is Pareto optimal, then
the dominant root of the pricing kernel (i.e. the matrix of state contingent
asset prices) at the equilibrium allocation will be strictly less than one.

These results have been extended in a number of directions. Work
by Abel, Mankiw, Summers and Zeckhauser [1] characterized the e¢ ciency
properties of competitive equilibrium in the benchmark model with produc-
tion using the Cass criterion. Zilcha [24] provides a similar characterization.
Chattopadhyay and Gottardi [7] show the optimality of competitive equi-
librium in a two-period-lived agents model with more than one good traded
in each period. This extension is not trivial, since Spear [21] shows that
strongly stationary equilibria don�t exist generically when agents trade more
than a single good in each period. A similar result obtains for single com-
modity models if agents live more than two periods. Finally, Demange
[10] provides a general characterization of various notions of optimality in
stochastic OLG settings, and shows that the stationary competitive equilib-
rium in a model in which agents trade a single good and live more than two
periods satis�es the Cass criterion if markets are sequentially complete, and
hence will be Pareto optimal. Our work builds on Demange�s in showing
that when markets are not sequentially complete, the competitive equilib-
rium does not allocate risk e¢ ciently.

The observation that the risk sharing among the individuals in the so-
ciety might be better with a social security system than without, has been
made by among others Ball and Mankiw [3], Bohn [5] and Smetters [20].

2 The Model

We work with an overlapping generations model in which agents become
economically active at age 20, and live for three 20 year periods, which
we call youth, middle-age, and retirement. While our attention will be
focused primarily on steady-states of the model, our interest in examining
optimality issues in the model leads us to view time as unfolding from an
initial period 0 in which there is a given population of initial agents who are
either middle-aged or old. We impose this modeling assumption in order
to make di¤erent steady-state allocations in the model Pareto comparable
in the sense that we can move from such allocation to another in ways that
make all agents no worse o¤. In particular, we wish to exclude the possibility
of reallocations that make all future generations better o¤ at the expense
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of an initial generation. The work of Benveniste and Cass [4] shows that if
there is no initial period, then only steady-state by steady-state optimality
comparisons matter. We can encompass a bi-in�nite time sequence if we
interpret period 0 as an initial starting period chosen arbitrarily for the
purposes of analyzing the model. For the same reasons, we do not consider
the question of multiple steady-state equilibria, even though such equilibria
are known to exist in OLG economies. In models in which agents live two-
period lives and trade a single good per period, for example, no-trade can
always be supported as a competitive equilibrium, even though there will
exist additional steady-state equilibria for the model. This question has
been studied by (among others) Kehoe and Levine [13] and Wang [23].

Households in the model receive a deterministic labor income when
young (!y) and middle-aged (!m), but must save in order to �nance con-
sumption when retired. They have two assets available: bonds which are in
zero net supply and pay one unit of consumption next period, and equity,
which is in �xed supply, normalized to one. Each period a dividend � is
paid out to the equity holders. The dividend is assumed to be stochastic,
and to keep the development relatively simple, we assume that the dividend
can take on one of two values, � 2

�
�h; �l

	
with �h > �l: We assume that

the stochastic dividend process is i.i.d., with the probablity of �s denoted
�s for s = h:l: This assumption can easily be relaxed to allow the dividend
process to be Markovian.

Agent�s preferences are given by a von Neumann-Morgenstern utility
function

E (U) = u (cy) + �E [u (cm)] + �
2E [u (cr)]

where the discount factor � is such that 0 < � � 1; and ci denotes con-
sumption in period i = y;m; r: The period utility functions u (�) are strictly
concave, strictly increasing and satisfy Inada conditions.

The assumption that one of the assets is productive is not necessary for
the results we obtain, and can be replaced by the assumption that both
assets are in zero net supply, as in Citanna and Siconol� [8]. While the
results we obtain will not be changed, the interpretation of the model is
di¤erent in each case. Speci�cally, when the asset is in positive net supply,
it is productive in that the dividend adds to the total resources available to
the economy. When this asset is in zero net supply, it is non-productive,
or speculative, in that the dividend is simply a return paid by one agent to
some other agent. For our analysis, we will focus on the positive net supply
case.
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2.0.1 Competitive Equilibrium

We focus now on competitive equilibrium. Each agent maximizes discounted
life-time expected utility conditional on the state in which the agent is born.

E (U) = u (cy) + �E [u (cm)] + �
2E [u (cr)]

subject to the individuals�period-by-period budget constraints

cy = !y � qby � pey
cm = !m + bm + (p+ �) ey � qbm � pem
cr = bm + (p+ �) em

where the various prices, asset holdings and consumption allocations are
as yet unspeci�ed random variables. In terms of these random variables,
market clearing conditions are

by + bm = 0;

ey + em = 1;

and the overall resource constraint

cy + cm + cr � !y + !m + � = !

where ! denotes to the total resources of the economy.

In any period, young and middle aged individuals will solve their opti-
mization problems. The �rst order condition with respect to the two assets
for the young agents are

�qu0 (cy) + �E
�
u0 (cm)

�
= 0

�pu0 (cy) + �E
��
p0 + �

�
u0 (cm)

�
= 0

�qu0 (cm) + �E
�
u0 (cr)

�
= 0

�pu0 (cm) + �E
��
p0 + �

�
u0 (cr)

�
= 0

Since the results we develop below depend on the structure of the sto-
chastic processes followed by the equilibrium prices, asset holdings and con-
sumption allocations, we �rst de�ne a short memory (following the termi-
nology of Citanna and Siconol� [8]) competitive equilibrium as one in which
the equilibrium prices and allocations depend on at most �nitely many re-
alizations of the exogenous shock. We will call the case where prices and
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allocations only depend on only the current realization of the exogenous
shock a strongly stationary equilibrium. A key result is the following

Lemma 1: For an open and dense of OLG economies, there is no short
memory competitive rational expectations equilibrium.

Proof: See Appendix A �
This non-existence result is important because it implies that any com-

petitive rational expectations equilibrium for the model must include lagged,
endogenous variables as state variables. This was �rst shown in Spear and
Srivastava [22]. Du¢ e et al. [11] subsequently established general equi-
librium existence results for OLG economies with lagged endogenous state
variables. In practice, macroeconomists working with these kinds of models
(particularly for numerical simulations) typically took the endogenous state
variables to be the distribution of wealth across agents. Equilibria of this
type are generally referred to as recursive equilibria. While it is not possi-
ble to prove that such equilibria always exist, recent results by Citanna and
Siconol� [9] show that the set of OLG economies for which such equilibria
exist are dense in the space of OLG economies, and hence, even though the
model we are working with doesn�t satisfy the Citanna-Siconol� conditions
required for existence of an exact recursive equilibrium, the density result
in their paper justi�es our focus on this equilibrium concept, particularly
for our computational simulations where the best one can hope for is an
approximation of the competitive equilibrium1. As noted earlier, there are
also issues of whether the recursive equilibrium is unique or determinate
that we cannot address here, though we acknowledge their importance.

To analyze the recursive equilibrium, we assume that at any point in
time, the economy is characterized by the realization of the endowment
process (!), lagged bond holdings and equity holdings by the middle aged�
bm(t�1); em(t�1)

�
: (In principle, the endogenous state variables should also

include the bond and equity holdings of the young agents, but these can be

1While a detailed explication of the Citanna-Siconol� results is beyond the scope of
this paper, our application of their results is based on the two key results of their paper.
The �rst result shows existence of simple Markov equilibria of type examined by Du¢ e
et al.. The second result then shows that there is a dense subset of economies for which
the Markov equilibrium can be represented as a recursive equilibrium. Since our model
lies in the larger space for which existence of Markov equilibria is guaranteed, Citanna-
Siconol��s second result implies that we can �nd a sequence of economies having exact
recursive equilibria which converges to our economy. For the numerical work we pursue
to show that the competitive equilibria in our model are not Pareto optimal, this is
su¢ cient. We note also that this approach is consistent with the Kubler and Schmedders
[14] interpretation of recursive solutions in numerical simulations as approximations via
"nearby" economies for which such equilibria exist.
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eliminated via the market-clearing conditions.) The vector

� =
�
bm(t�1); em(t�1); st

�
2 � � R3

is the state of the economy. Hence, an equilibrium is a sequence of allocations
fbm(�); em(�)g and a sequence of prices fq(�); p(�)g such that

1. Each individual solves her/his optimization problem subject to budget
constraint;

2. The bond and equity markets clear and the aggregate resource con-
straint holds.

Finally, and most importantly, we note that in the recursive equilibrium,
markets are not sequentially complete. Sequential market completeness re-
quires that if we �x the state variables at any time t; there exist su¢ ciently
many �nancial instruments for agents to transfer wealth between states of
the world in period t + 1: For the recursive formulation of the model, if
we �x the state variables at time t at their equilibrium values, we take the
realizations of past bond and asset holdings and current endowment realiza-
tions as �xed. The states at time (t + 1) now consist of the current bond
and asset holdings of the middle aged, together with the two possible time
(t+1) endowment realizations. Because we know there is no equilibrium in
which time (t + 1) prices don�t depend on the lagged state variables, there
are necessarily more than two future states. But agents at time t have only
the two �nancial instruments with which to transfer wealth across states, so
the markets are necessarily sequentially incomplete. This result is obviously
crucial to our results, since Demange [2002] has shown that when markets
are sequentially complete, the competitive equilibrium allocation is Pareto
optimal. We can also show that this market incompleteness result extends
necessarily to any Markovian equilibrium in which prices depend on lagged
endogenous variables. This will follow from the fact that if markets are
sequentially complete, then it is possible to transform the sequential budget
constraints that agents face into a single life-cycle constraint. If we let
p (zt�1; st) denote the price of the equity asset when the resource shock is st
and the lagged endogenous variables are given by zt�1; and q (zt�1; st) de-
note the price of the bond, then the sequential budget constraints are given
by

cy = !y � q (zt�1; st) by � p (zt�1; st) ey
cm = !m + by + [p (zt; st+1) + �

st+1 ] ey � q (zt; st+1) bm � p (zt; st+1) em
cr = bm + [p (zt+1; st+2) + �

st+2 ] em
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To convert this to a single budget constraint, we multiply cm by q (zt�1; st)
and cr by q (zt�1; st) q (zt; st+1) and add the three constraints. This yields
(after some manipulation)

cy + q (zt�1; st) cm + q (zt; st+1) q (zt�1; st) cr = !y + q (zt�1; st)!m+

+ [q (zt�1; st) [p (zt; st+1) + �
st+1 ]� p (zt�1; st)] ey+

+ [q (zt; st+1) [p (zt+1; st+2) + �
st+2 ]� p (zt; st+1)] q (zt�1; st) em

Now, for this to reduce to a single life-cycle budget constraint, we would
require that the following no-arbitrage conditions hold

q (zt�1; st) [p (zt; st+1) + �
st+1 ] = p (zt�1; st)

and
q (zt; st+1) [p (zt+1; st+2) + �

st+2 ] = p (zt; st+1)

Now, �x zt�1 and st = h (say). These conditions would then require that

p (zt; h) + �
h = p

�
z0t; h

�
+ �h

for any z0t which requires strong stationarity. We turn next to a discussion
of optimality in the model.

3 Optimality in the Stochastic Economy

We turn now to the main question of the paper, and examine the competitive
equilibrium for a model with aggregate shocks to total resources laid out in
Section 2, and examine the risk-sharing properties and related optimality is-
sues of this equilibrium. Because the model we are considering is stationary
and we are focusing on stationary competitive equilibrium allocations, we
will limit our notion of optimality to the case of stationary allocations. In
order to compare the results we obtain for the incomplete markets environ-
ment of the model with those obtained elsewhere in the literature, we also
look at the three standard notions of optimality: ex ante, ex interim, and
resource conditional optimality as de�ned, for example, in Demange [10].

Our �rst result characterizes perfect risk sharing.
The optimal stationary risk-sharing allocation will be a solution to the

optimization problem

max
f

X
i=y;m;r


iEiui (fi)

subject to

fy (!
s; z) + fm (!

s; z) + fr (!
s; z) = !s
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where each agent�s allocation is assumed to be a function of current resources
!s, and lagged endogenous variables, which we denote by z. The 
i�s are
social welfare weights the planner assigns to each agent. We index the
expectation operator by each agent�s type to allow for di¤erent notions of
optimality. The di¤erent notions we consider are ex ante optimality across
all agents, resource state conditional ex interim optimality (in which the
planner considers takes the expectation for young agents over lagged en-
dogenous variables, but not over the resource state in which the young were
born), and conditional optimality (in which the planner takes the current re-
source state and realized lagged endogenous variables of the young as given).
Letting � be the (assumed known) invariant distribution of lagged endoge-
nous variables, the expected utility for each middle-aged or retired agent in
the optimization problem for any optimality concept is given byZ h

�lui

�
fi

h
!l; z

i�
+ �hui

�
fi

h
!h; z

i�i
d� (z) for i = m; r:

For an ex ante notion of optimality, this will also be the expected utility of
the young. In the resource conditional ex interim case, the expected utility
of the young will be Z

uy (fy [!
s; z]) d�(z)

while in the conditional case, the objective function for the young will simply
be uy (fy [!s; z]). With these de�nitions, we can now state our result.

Theorem 1: Perfect risk sharing implies a strongly stationary consump-
tion sequence.

Proof: For the ex ante and resource conditional ex interim cases, the
�rst-order conditoins for the planner�s problem are


i�su0i (fi) g (z)� �s = 0; for s = l; h and i = y;m; r
fy (!

s; z) + fm (!
s; z) + fr (!

s; z) = !s

where g(z) is the Radon-Nikodym derivative of the measure � with respect
to z: Theses conditions imply that


i�su0i (fi) = 

j�su0j (fj) for s = h; l and i 6= j:

Hence, we can solve for say fy and fm in terms of fr: Substituting back
into the resources constraints will then yield allocations which are strongly
stationary. Taking ratios in the �rst set of �rst-order conditions, we get the
usual equality of state contingent marginal rates of substitution condition:

�lu0i
�
fi
�
!l; z

��
�hu0i (fi [!

h; z])
=
�l

�h
for i = y;m; r
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so that risk in this allocation is being shared optimally. Note in particular
that the probability g(z) for lagged endogenous state variables drops out,
since it is the same across current realizations of total resources.

For the conditional optimality case, the �rst-order conditions for the
middle-aged and retired are as above, while for the young, they become


yu0y (fy)� �s = 0:

In this case, since the Lagrange multiplier associated with the resource con-
straint doesn�t depend on lagged endogenous variables, the allocation of the
young will also be independent of these variables. Since the �rst-order con-
ditions of the middle-aged and retired remain as before, their allocations are
also independent of lagged endogenous variables, and we again obtain the
result that optimal allocations are strongly stationary.�

This result is quite intuitive. Since the exogenous uncertainty is in-
dependent of any endogenous uncertainty, the optimal allocation simply
ignores endogenous �uctuations, and allocates total resources in a way that
minimizes the variance associated with these �uctuations. There is one ad-
ditional curious possibility that we might need to consider, however, which
is that the weights in the social planner�s problem might themselves be func-
tions of lagged endogenous variables. Since the �rst-order conditions require
that


y�
su0y (fy) = 
m�

su0m (fm) = 
r�
su0r (fr) for s = l; h

this would yield allocations depending on the lagged endogenous variables.
But in this case, since the planner is free to choose the weights, ex ante op-
timization would lead him to choose constant weights, since these minimize
the variances of each agent�s allocation. Note �nally that this result can be
extended readily to Markovian shock processes.

This result tells us immediately that the competitive equilibrium in a
stochastic OLG economy in which agents live for more than two periods
does not allocate risk optimally. Since it is only the young and middle-
aged who have incentives to engage in risk-sharing trades, the ine¢ cient
risk-sharing implies that there are trades available to the young and middle-
aged which will improve risk-sharing, and hence, lead to a short-run Pareto
improvement for the economy. Hence, we have the following result.

Theorem 2: If agents live more than two periods, the laissez-faire
competitive equilibrium allocation is not dynamically Pareto optimal.

Proof : Since the competitive equilibrium is not strongly stationary, risk
is not allocated optimally. If it occurs that in some period t the young and
middle-aged agents contingent allocations in the following period are such
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that their state-contingent marginal rates of substitution at these allocations
are not equal then these agents can generate a bilateral ex ante Pareto
improvement by contracting between themselves to have the agent with
the smaller MRS move along her indi¤erence curve toward the diagonal
(reducing variance while keeping expected utility constant), while the agent
with the larger MRS takes the opposite side of this swap. This makes the
agent with the higher MRS strictly better o¤. Since this improvement
makes no other agent in the economy worse o¤, it constitutes a short-run
Pareto improvement, and hence, the competitive equilibrium is not short-
run optimal. Since short-run optimality is necessary for long-run optimality,
it follows that the competitive equilibrium is not Pareto optimal.�

As a corollary, the same argument establishes that the competitive allo-
cations will not be Pareto optimal for any equilibrium which depend non-
trivally on lagged endogenous state variables. These results can also be
extended to allow for �nitely many heterogenous types of agents and life
cycles of more than three periods.

We turn next to a set of numerical simulations that illustrate the results
shown here.

4 Numerical simulations

The numerical simulations are meant to illustrate our theoretical results,
to give an indication of the quantitative importance of the suboptimality
of the C.E., and to give an estimate for the time necessary to reach the
stationary, optimal equilibrium. For the numerical work, we assume that
utility funcitons are CRR, of the form

u (ci) =
c1�ai

1� a for i = y;m; r

where a is the agent�s coe¢ cient of relative risk aversion. The numerical
solution technique uses the parameterized expectations approach to �nd
the rational expectations equilibrium of the model. The details about the
computational approach are in Appendix B.

4.1 Parametrization

As a benchmark, we work with a parametrization of the model in which
both the dividend and labor income are stochastic. Speci�cally, we assume
that labor�s share of the total endowment is 23 ; and the ratio of labor income
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when young to labor income when middle-aged is 35 : So, for any given total
endowment !, we have

� =
1

3
!;

wy =
3

8

2

3
! =

1

4
!;

wm =
5

8

2

3
! =

5

12
!:

The endowment-process follows a two-stage Markov process. For the
benchmark simulations, the endowment process is assumed to be i.i.d. with
realizations

�
!l; !h

	
= f0:95; 1:05g.

The time-preference parameter � = 1; and the risk aversion coe¢ cient
a = 2:

4.2 Numerical results

For these parameters, the socially optimal allocation gives each agent 0.35
units of consumption in the high state, and 0.317 units in the low state.
The expected utility for the social optimum is Eu = �9:02: The standard
deviation of the social optimum is 0:0233:

At the competitive allocation, Table 1 shows the average consumptions
and standard deviations of consumption for the various types of agents in
the high and low states

cy cm cr
Low 0.19719 0.30268 0.45013
(SD) 0.00018 0.00099 0.00117
High 0.21388 0.32490 0.51122
(SD) 0.00020 0.00112 0.00131

Table 1: Summary statistics, benchmark

The chart below shows the time-series of consumption for a typical equi-
librium simulation of the model. The time-series clearly illustrate that the
variance of consumption for the old is signi�cantly larger than for the middle-
aged, and an order of magnitude higher than that of the young, which
strongly suggests that there may be room for improved risk-sharing.

The expected utility for a typical agent can be estimated from the simu-
lation data using the fact that the equilibrium allocations follow an ergodic
stochastic process, so that time-series and cross-sectional averages will be
the same. From this data, we �nd that Eu = �10:14: Hence, the socially
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optimal allocation improves overall expected utility for this calibration of
the model by roughly 11%. The overall average standard deviations of con-
sumption for each type of agent are �y = 0:008; �m = 0:011; and �r = 0:031:
Clearly, the old bear far more risk in the competitive equilibrium than they
do at the social optimum.

We illustrate the results implied by Theorem 2 in our numerical simu-
lation by �rst showing directly that the kind of improved risk-sharing de-
scribed in the theorem is indeed possible in the simulated economy. The
diagram below shows the tree of realized consumptions for middle-aged and
old agents over a span of four periods. In the tree, branches going up
indicate realizations of the high resource state, while branches going down
indicate a low resource state realization. For each allocation at each node
of the tree, we calculate the marginal rate of substitution between low and
high state allocations for both middle-aged and old, and, as is apparent
from the diagram, the middle-aged have uniformly higher MRS�s than do
the old, indicating that there is always a risk-improving reallocation of the
type indicated above that is possible.

We can generalize this direct demonstration to show that such improve-
ments are always possible using the fact that the distribution of allocations
generated by the competitive equilibrium is ergodic, and hence time aver-
ages and cross-sectional averages will be the same. Consider a middle-aged
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and a retired agent at any time t: For the parametrization of the model,
the state-contingent MRS for the middle-aged agent will be

MRShlm =

�
clm
chm

�2
while that of the old agent will be

MRSklr =

�
clr
chr

�2
where cij is the j = H;L state allocation of agent i = m; r: Using the
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resource constraint, we can write the old agent�s MRS as

MRShlr =

 
rl � cly � clm
rh � chy � chm

!2

=

�
r̂l � clm
r̂h � chm

�2
where r̂s is the total state s resources net of the allocation of the young.
Now, consider the middle-aged agent�s share of net resources in the low
state

clm
r̂l

and suppose that this agent gets the same share of net resources when the
state is high. In this case, her MRS will be

MRSlhm =

0@ clm�
clm
r̂l
r̂h
�
1A2 = � r̂l

r̂h

�2
:

Since the old agent�s share in the high state in this case is 1� clm
r̂l
= clr

r̂l
; it

follows that the old agents state-contingent MRS will be

MRSlhr =

0@ clr�
clr
r̂l
r̂h
�
1A2 = � r̂l

r̂h

�2

and hence, since the MRS�s are equal, we would have optimal risk-sharing.
Since we know that the CE does not allocate risk optimally, it must be the
case that one agent�s share of the net resources in, say, the high state is
greater than the other agent�s. So, suppose the middle-aged agent gets a
smaller share in the high state than she does in the low state. Let 0 < " < 1
and assume that her high state share is

(1� ") c
l
m

r̂l
:

Then the old agent�s high state share will be

(1 + ")
clr
r̂l
:
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Plugging these into the MRS formulas, we have

MRSlhm =

 
clm

(1� ") clm
r̂l
r̂h

!2
=

�
r̂l

(1� ") r̂h

�2
and

MRSlhr =

 
clr

(1 + ") c
l
r

r̂l
r̂h

!2
=

�
r̂l

(1 + ") r̂h

�2
and the old agent will have a smaller state-contingent MRS than the middle-
aged.

The simulated data show that these kinds of opportunities for improved
risk-sharing always exist. The chart below shows the shares for old and
middle-aged in each of the resource states for a simulated time-series (after
convergence of the numerical algorithm used to compute the equilibrium)
consisting of 3000 periods. Clearly, the old get a uniformly higher share of
net resources in the high state, while the middle-aged get a higher share in
the bad state. Hence, via the argument above, there are always opportuni-
ties for improved risk-sharing.
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5 Decentralized optimality

Since the socially optimal allocation for the economy is a Pareto optimal
steady-state, the second welfare theorem implies that it can be supported
as a competitive equilibrium after some reallocation of resources. Since we
know that when the productive asset pays any positive dividend, the result-
ing competitive equilibrium will not be strongly stationary and hence not
optimal, it follows that to implement the optimal steady-state, the central
planner (which we will refer to hereafter as the government) must com-
pletely tax away the dividend, and then redistribute it back to the agents as
lump sum transfers. One way the government could implement the optimal
steady-state would be to give agents exactly the right shares of total re-
sources so as to implement the optimal allocation as a no-trade equilibrium.
While this is easy enough to do in our simple three-period setting, in more
complicated economies, it would require the government to hit an alloca-
tion target having measure zero in the space of all possible state contingent
allocations. So, we inquire instead whether, having taxed away the divi-
dend and then rebated it arbitrarily, agents can then trade via competitive
markets to the optimal allocation. The answer to this question is yes, if
we impose a kind of �nancial reform and introduce a set of Arrow securities
to allow agents to insure themselves against the intertemporal e¤ects of the
resource shocks.

5.1 Financial Reform

To show this result, we denote the post-transfer endowments of agents as ~!si ;
for i = y;m; r and s = h; l: We assume that agents can (as before) trade one
period bonds in zero net supply in order to allocate income intertemporally.
We also introduce a set of Arrow securities, denoting the holdings of a type
i agent born in resource state s which pays o¤ in one unit of consumption
in state s0 by ass

0
: We will denote the bond prices by qs; as before, and

let ps be the (nominal) price of the Arrow security that pays o¤ in state s:
With these modi�cations, the budget constraints for the model (under the
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assumption that we are at a strongly stationary allocation) take the form

csy = ~!sy � qsbsy for s = h; lX
s0

ps
0
ass

0
y = 0 for s = h; l

css
0

m = ~!s
0
m + b

s
y + a

ss0
y � qs0bs0m for

�
s; s0

�
2 fh; lg2X

s00

ps
00
as

0s00
m = 0 for s0 = h; l

cs
0s00
r = bs

0
m + a

s0s00
m for

�
s0; s00

�
2 fh; lg2 :

The constraint on the Arrow securities requires that they be self-�nancing
in the sense of allowing transfers only between di¤erent states of nature and
not over time.

The �rst-order conditions for the budget constrained utility maximiza-
tions of young and middle-aged agents are

�qsu0
�
csy
�
+
X
s0

�s
0
u0(css

0
m ) = 0 for s = h; l

u0
�
css

0
m

�
� �sps0 = 0 for

�
s; s0

�
2 fh; lg2

�qs0u0
�
css

0
m

�
+
X
s00

�s
00
u0(cs

0s00
r ) = 0 for

�
s0; s00

�
2 fh; lg2

u0
�
cs
0s00
r

�
� �s0ps00 = 0 for

�
s0; s00

�
2 fh; lg2

together with the budget constraints above. Here, �s is the Lagrange mul-
tiplier associated with the self-�nancing condition on the Arrow securities.
Market clearing for the model requires that

csy + c
s0s
m + cs

0s
r = ~!sy + ~!

s
m + ~!

s
r for s = h; l

bsy + b
s
m = 0 for s = h; l

as
0s
y + as

0s
m = 0 for

�
s; s0

�
2 fh; lg2 :

Now, the �rst-order condition for the middle-aged agent implies that con-
sumption of the middle-aged at equilibrium can�t depend on the agent�s
birth state, since the right-hand expected utility of consumption when old
for the agent doesn�t depend on the birth state. Together with the re-
source constraints, this implies that consumption when old only depends on
the current resource state. The �rst-order conditions for the Arrow securi-
ties then imply that the Lagrange multipliers are independent of the lagged
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shock. Note also that the consumption market-clearing conditions are re-
dundant given asset market-clearing and the budget constraints. Finally,
the �rst-order conditions for the Arrow securities implies that

u0
�
chm
�

u0 (clm)
=
ph

pl

while the �rst-order condition with respect to the middle-aged agent�s bond
holdings implies that

u0
�
chm
�

u0 (clm)
=
ql

qh

so that the bond and Arrow security prices are not independent.
Hence, we are left then with a system of 14 equations in 14 variables: the

2 bond prices, 4 bond holdings, 8 Arrow security holdings. These equations
can be solved under standard conditions using standard techniques.

To show that the competitive equilibrium allocation allocates risk opti-
mally, consider the �rst-order conditions for the Arrow security holdings for
a middle aged agent. Fixing s and taking s0 = h; l; and taking ratios we get

u0
�
chm
�

u0 (clm)
=
ph

pl
:

Doing the same thing for the old agent, we �nd

u0
�
chr
�

u0 (clr)
=
ph

pl
:

Hence, the middle-aged and old have their state-contingent marginal rates
of substitution equalized and are sharing risk optimally. The �rst-order
conditions with respect to bond holdings, together with the price dependence
between bond and Arrow security prices show that the state-contingent MRS
of the young is also equal to ph=pl:

To show �nally that the socially optimal allocation will be attained in
this setting, we need to make one more assumption: the government transfer
to the old is not so large that the endowment allocation is already optimal.
We need this assumption since it�s possible that if the transfer to the old
is large, the endowment allocation will be in the classical region. Given
this assumption, we can determine the competitive equilibrium prices which
support the social optimum by plugging in the consumptions at the social
optimum in the equilibrium equations above, and backing out the prices.
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There are a couple of important observations about this result that we
should make. First, the result shows in particularly stark form the im-
portance of providing some form of intergenerational insurance if we are
interested in agents�overall welfare. It is clear from the budget constraints,
particularly for the old agents, that the Arrow securities allow the agent to
smooth consumption across shock realizations in ways that the bond hold-
ings alone do not. This suggests an obvious role for government insurance
programs in the absence of private provision of assets of this form.

The second observation concerns the fact that we can �nd a strongly
stationary equilibrium with Arrow securities, but not with privately held
productive assets. While it might be tempting to think that this is due to
the fact that the productive asset is in positive net supply, this is not the
reason, since we can show the same inoptimality result if the equity asset is
assumed to be in zero net supply. (Indeed, none of our optimality analysis
relies at all on the fact the the equity asset is in positive net supply.) Rather,
the reason we can �nd a strongly stationary equilibrium with the Arrow
securities stems from the self-�nancing constraint. Because the insurance
actions of the Arrow securities are required to be self-�nancing, there is
no change in wealth associated with realizations of states of nature, and
hence no active changes in what would otherwise be the endogenous state
variables in the model. In the presence of a productive asset, or a non-
productive speculative asset which pays a state contingent dividend, there
are real welath e¤ects generated by the resolution of uncertainty. These
wealth e¤ects create subsidy relationships between agents that break the
possibility of agents facing a single, life-time budget constraint, and thus
generate the incomplete markets phenomenon.

While we have demonstrated how the second welfare theorem can be
applied, the requirement that the government essentially con�scate the full
return on the assets is obviously problematic. To the extent that asset
returns provide incentives in more complicated economic environments in
which agents make investments in productive activities, removing this incen-
tive by taxing it completely away will cause obvious problems. So, we look
next at an alternative to the full application of the second welfare theorem,
by considering a tax on dividends that is signi�cantly less than con�scatory,
coupled with a lump sum rebate of the tax which moves the economy in
the �right direction�toward the social optimum, and ask whether this will
implement a set of Pareto improving allocations.
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5.1.1 Stochastic steady state with taxes and transfers

Kubler and Kruger [14] showed via a numerical example that a pay-as-you-
go social security system can lead to Pareto improvements after bad state
realizations in a model similar to ours, so there is reason to think this will
also be so here. The model with taxes and transfers is the same as our
benchmark model, except that we modify the budget constraints to re�ect
the fact that the government now imposes a proportional tax of t on the
dividend realization, and uses the proceeds from this tax to give lump sum
transfers � i; i = y;m; r to the households. Hence, the sequential budget
constraints become

cy � !y � qby � pey + �y
cm � !m + by + ey

�
p0 + (1� t) �

�
� q0bm � p0em + �m

cr � bm + em [p" + (1� t) �] + �r:

The government�s budget constraint requires that in each period

�y + �m + �r = t�:

We compute the recursive competitive equilibrium of the tax-transfer model
for tax rates of 25%, 50% and 75%, under the assumption that all of the
lump sum transfer goes to the old. The results for each tax level clearly
improve risk-sharing and raise expected utility. The table below shows
the variance of consumption for the old, the overall expected utility, and
minimum consumption for the young at each tax rate.

Tax rate var(cr) min (cy) EU

0.00 0.000934 0.19692 -10.14377318
0.25 0.000859 0.2053 -9.963402732
0.50 0.000770 0.21629 -9.75796138
0.75 0.000645 0.23241 -9.51129027

The chart below plots the consumptions of the young in the zero tax case
and the 75% tax case over a typical run of 100 periods. From the diagram,
it is clear that the young will be getting strictly more consumption under
the tax-transfer equilibrium than in the zero tax case. Combining this
observation with the expected utility improvement, we infer that the tax-
transfer equilibrium will in fact Pareto dominate the zero tax equilibrium.
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6 Empirical Implications

While the current model �particularly given its abstracting away of pro-
duction � is far to coarse to provide detailed (even calibrated) empirical
predictions, it is not without empirical content. First, the model predicts
that given the standard equity-structured asset market, a purely laissez-faire
market system misallocates risk, and, in particular, imposes much more risk
on retired agents than it does on young or middle-aged agents. This result
is intuitive: young and middle-aged agents can actively balance or rebalance
their asset portfolios to o¤set market risk. The old cannot. In the model,
the optimal response to this is for the old to save in excess of what they
would if they didn�t face the degree of risk imposed in the laissez-faire com-
petitive equilibrium. Indeed, when we move from the equity-based model
of assets to one based purely on decentralized social insurance, the average
consumption of the old falls along with the variance of their consumption,
and that of the young rises signi�cantly.

From an empirical perspective, then, one obvious implication of the
model is that insuring the consumption �ows of old agents, who cannot
hedge against systemic risk leads to improved risk-sharing. This in turn
suggests an important role for social insurance programs like the U.S. Social
Security system and other similar old-age insurance systems elsewhere in
the world. But the model also predicts that a second Pareto improvement
associated with reducing the risk face by old agents is a concurrent increase
in the consumption for the young. Hence, we need to ask whether we in fact
see such reallocative transfers occurring in the data. We would argue that
we do. In addition to Social Security transfers that help reduce consump-
tion variance in old age, we can identify another substantial set of income
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transfers at work that actually bene�t younger households, which are paid
for through taxes levied on older, wealthier households. These bene�ts for
the young and middle-aged households include the deductibility of home
mortgage interest, the deductibility of property taxes (which largely sup-
port public education), exclusion of employer contributions for health care
and insurance, direct federal support of public education at both K-12 and
post-secondary levels, together with various education-related tax deduc-
tions, standard deductions for child support, and direct child care credits.
In 2004, these expenditures amounted to about $315 billion. Add to this
another $170 billion that the States spend to support their public university
systems, and we get a total bene�t of $485 billion that society provides to
younger families as they get started. This is on a par with the $500 billion
spent in 2004 on Social Security payments. These transfers are typically
justi�ed in terms of the bene�t principle: young households that bene�t
from the various cost reductions associated with the transfers should pay
for them, though delaying repayment until later in life provides a net bene-
�t to the individual bene�ciaries. Our model suggests that there is a deeper
quid pro quo at work in the form of a social contract that leads to improved
risk-sharing over the life-cycle.

7 Conclusion

The analysis we have presented demonstrates unambiguously that the laissez-
faire competitive equilibrium in a multi-period OLG economy with pro-
ductive assets will be Pareto suboptimal because of imperfect risk-sharing.
The deviation from the �rst welfare theorem arises because of the restricted
market participation imposed on unborn agents by the �nite lifetimes as-
sumption underlying the OLG environment, and the endogenous market-
incompleteness generated by the weak stationarity of the competitive equi-
librium in the multi-period setting.

On a very fundamental level, these results also have clear and obvious
policy implications for the ongoing debate over whether governments should
provide social insurance. Compared with a situation where the government
has no role in redistributing income across generations, our exercise shows
that government intervention can improve upon the risk sharing between
the individuals and therefore the welfare of everybody. The exact extent
of government intervention is harder to quantify. Since the two factors of
production are supplied inelastically in our model economy, we are also
ignoring any potential tax-induced distortions which might reduce welfare.
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In a world where governments can not solely rely on lump-sum taxation,
there will exist trade-o¤s between risk sharing and e¢ ciency in production.
We leave this open for further research.
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8 Appendix A

Proof of Lemma 1.
We will outline the proof for the non-existence of a strongly stationary

equilibrium. The extension to short memory equilibria is straightforward,
and details can be found in Citanna and Siconol� (2007). So, assume,
for the moment, that there is a strongly stationary equilibrium. Then the
assumption that the exogenous dividend shock st 2 fh; lg and the shocks
are i.i.d., allows us to write the budget constraints and �rst-order conditions
as

csy = !y � qsbsy � psesy
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Here, we index second and third period consumptions with both the current
and lagged shock realizations because agents�holdings of the equity asset
will generally depend on the state in which the asset was purchased. Market
clearing requires that

bsy + b
s
m = 0; for s = h; l

and
esy + e

s
m = 1; for s = h; l:

These equations have several implications. Note �rst that since the
expected marginal utility expressions in each of the �rst-order conditions
of the middle-aged is independent of the lagged state, this implies that
chlm = cllm � clm; and c

hh
m = clhm � chm: Since �rst period consumptions only

depend on the current state, the resource constraint and the fact that the
endowment process is i.i.d. then implies that chsr = clsr � csr. Via the budget
constraints above, we can show explicitly that the bond and equity holdings
in the model must be state independent. To see this, consider

chhm = !m + b
h
y +

�
ph + �a

�
ehy � qhbhm � phehm

and
clhm = !m + b

l
y +

�
ph + �a

�
ely � qhbhm � phehm:

Since chhm = clhm; this implies that

bhy +
�
ph + �h

�
ehy = b

l
y +

�
ph + �h

�
ely:

Similarly, since chlm = c
ll
m;

bhy +
�
pl + �l

�
ehy = b

l
y +

�
pl + �l

�
ely:

Subtracting the second equation from the �rst, we get

ehy

h
ph + �h � pl � �l

i
= ely

h
ph + �h � pl � �l

i
:

From this expression, either ehy = e
l
y or p

h + �h = pl + �l: In the �rst case,
we also infer that bhy = b

l
y: In this case, then, we are left with a system of

10 equations in the eight variables qh; ql; ph; pl; by; bm; ey; and em: In the
latter case, we have two functional dependencies between the prices of the
asset, and hence, we will have a system of 12 equations in the 11 variables
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qh; ql; ph; bhy ; b
l
y; b

h
m; b

l
m ehy ; e

l
y; e

h
m; and e

l
m: In both cases, it is possible

to show that generically there cannot be an equilibrium using techniques
similar to those developed by Citanna and Siconol� (2007).2.

Extending this result to all for short memory equilibria requires noting
that the only way allocations could depend on two or more lagged exogenous
shocks would be if the prices depended on these lagged shocks. In this case,
if consumptions depend on n lagged shock realizations, then a middle-aged
agent looking forward one period will integrate out the next period shock,
so that the expected marginal utility component of the �rst-order condition
will be independent of the �rst lagged shock in the middle-aged agent�s
consumption, so that this consumption must, in fact, not depend on this
shock. From this observation, we can unravel the shock dependence back
to the strongly stationary case.

9 Appendix B

We solve the model by approximating the decision rules of the individuals
of the economy by a smooth function. The parameters of the function are
then revealed by imposing identifying restrictions dictated by our model
economy.

A general representation of the problem is to approximate the solution
to

EtF (yt+1; xt+1; zt+1; yt; xt; zt) = 0

where F : Rny � Rnx � Rny � Rnx � Rnz ! Rny+nx describes the decision
problem of the individual. x is the set of state variables that are endogenous
to the model economy, y is the set of individual decision variables, and z is
the set of exogneous state variables. The solution of the model is a set of
decision rules for the control variables

yt = g (xt; zt)

Next period�s exogenous state is de�ned by zt+1 = f(zt; "t+1) and next
period endogeous state variables as

xt+1 � h (xt; yt; zt)
2This result was �rst shown by Spear for OLG economies in which agents live two

periods but trade multiple goods. To the best of our knowledge, the corresponding result
for single good economies in which agents live more than two periods was �rst shown by
Aiyagari while he was visiting Carnegie Mellon in 1984, though the result does not appear
to have been published anywhere.

29



hence
xt+1 = h (xt; g (xt; zt) ; f(zt))

and

yt+1 = g (xt+1; zt+1) = g (h (xt; yt; zt) ; f(zt)) = g (h (xt; g (xt; zt) ; zt) ; f(zt))

such that the model can be rewritten

EtR(xt; zt; g) = 0

The idea of the minimum method is to replace the true decision rule g by a
parametric approximation function, �(xt; zt�), of the current state variables
xt and zt and a vector of parameters �.

We approximate the decision rules using Chebyshev polynomials as basis
functions.

�(xt; zt; �) =

nX
i=0

�iTi ('(xt; zt))

where Ti(�) is the Chebychev polynomial of order i = 0; : : : ; n.
These polynomials are described by the recursion

Tn+1(x) = 2xTn(x)� Tn�1(x) with T0(x) = 1; T1(x) = x

which admits as solution

Tn(x) = cos(n cos
�1(x)):

The polynomials form an orthogonal basis with respect to the weighting
function !(x) = (1� x2)�1=2 over the interval [�1; 1]. This interval may be
generalized to [a; b], by transforming the data using the formula

x = 2
y � a
b� a for y 2 [a; b]

Beyond the standard orthogonality property, Chebyshev polynomials exhibit
a discrete orthogonality property which writes as

nX
i=1

Ti(rk)Tj(rk) =

8><>:
0 for i 6= j
n for i = j = 0
n
2 for i = j 6= 0

where rk; k = 1; : : : ; n are the roots of Tn(x) = 0.
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Procedure

Choose an order of approximation n!, nay and nam for each dimension,
compute the n! + 1, nay + 1 and nam + 1 roots of the orthogonal
polynomial of order n! + 1, nay + 1 and nam + 1 asz

i
! = cos

�
(2i� 1)�
2 (n! + 1)

�
for i = 1; : : : ; n! + 1

ziay = cos

�
(2i� 1)�
2 (nay + 1)

�
for i = 1; : : : ; nay + 1

ziam = cos

�
(2i� 1)�
2 (nam + 1)

�
for i = 1; : : : ; nam + 1

and formulate an initial guess for �. Compute !i as

i = w¯
+
�
zi! + 1

� �! � w
¯

2
for i = 1; : : : ; n! + 1

ayi = a¯
y +

�
ziay + 1

� �ay � a
¯
y

2
for i = 1; : : : ; nay + 1

ami = a¯
m +

�
ziam + 1

� �am � a
¯
m

2
for i = 1; : : : ; nam + 1:

to map [�1; 1] into [a
¯
m; �am]. At each node

�
!i; a

y
j ; a

m
k

�
, i = 1; : : : ; n!+

1, j = 1; : : : ; nay + 1, and k = 1; : : : ; nam + 1 compute

ayt+1 � �
�
!i; a

y
j ; a

m
k ; �

ay
�
=

n!X
j!=0

nayX
jay=0

namX
jam=0

�a
y

j! ;jay ;jam
Tj! (!i)Tjay

�
ayj

�
Tjam (a

m
k )

amt+1 � �
�
!i; a

y
j ; a

m
k ; �

am
�
=

n!X
j!=0

nayX
jay=0

namX
jam=0

�a
m

j! ;jay ;jam
Tj! (!i)Tjay

�
ayj

�
Tjam (a

m
k )

1.2.

hence

cyt = w
y � ayt+1

cmt = w
m + ayt (1 + r � �)� amt+1

crt = w
r + amt (1 + r � �)

where wy; wm; wr and r all are functions of !t and a
y
t + a

m
t .
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3. Then, for each node
�
!i; a

y
j ; a

m
k

�
, compute the (ex ante) expected

consumption the following period. For `= 1; : : : ; q

ayt+2;` � �
�
�!i + z`

p
2�"; a

y
t+1

�
!i; a

y
j ; a

m
k

�
; amt+1

�
!i; a

y
j ; a

m
k

�
; �a

y
�

=

n!X
j!=0

nayX
jay=0

namX
jam=0

�a
y

j! ;jay ;jam
Tj!

�
�!i + z`

p
2�"
�

� Tjay
�
ayt+1

�
!i; a

y
j ; a

m
k

��
Tjam

�
amt+1

�
!i; a

y
j ; a

m
k

��
amt+2;` � �

�
�!i + z`

p
2�"; a

y
t+1

�
!i; a

y
j ; a

m
k

�
; amt+1

�
!i; a

y
j ; a

m
k

�
; �a

m
�

=

n!X
j!=0

nayX
jay=0

namX
jam=0

�a
m

j! ;jay ;jam
Tj!

�
�!i + z`

p
2�"
�

� Tjay
�
ayt+1

�
!i; a

y
j ; a

m
k

��
Tjam

�
amt+1

�
!i; a

y
j ; a

m
k

��

4. Compute the residuals of (ex ante) expected marginal rates of substi-
tution

Ra
y
�
!i; a

y
j ; a

m
k ; �

�
= (cyt )

�� � �p
�

qX
`=1

�`
�
cmt+1;`

���
(1 + r � �)

Ra
m
�
!i; a

y
j ; a

m
k ; �

�
= (cmt )

�� � �p
�

qX
`=1

�`
�
crt+1;`

���
(1 + r � �)

5. If all residuals are close enough to zero then stop, if not update �:
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