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Energy-unique pore search
In order to train the neural network, a set of energy-unique pore 
structures was needed for calculating DFT energies for the 
training and test sets. The image above represents approximately 
1.3% of the total structure set.

DFT quickly reaches computational limits as the number of atoms 
in the system increases beyond approximately 100 atoms. We 
would like the NNP to be useful for systems that are larger than 
those used to train it. Here we see a comparison between DFT and 
the NNP for system sizes approaching the upper limit of practical 
DFT calculation times.

• Graphene is a 2D carbon material that is impermeable to all 
gases [1].

• Engineering pores into graphene can adjust its transport 
properties, but current methods of creating pores can leave 
unintentional vacancies [2].

• Predicting the rearrangement of pores would be too 
computationally costly with density functional theory (DFT).

• A neural network potential (NNP) can offer similar accuracies 
but with greatly increased computational speed [3].

Training a NNP that is 
capable of predicting 
energies over a variety of 
structures requires a 
diverse training set. 
Approximately 7k unique 
DFT calculations are 
divided between the 
training set (90%) and 
the test set (10%).

We compare energy 
calculations between the 
NNP and the DFT 
training set to examine 
convergence. We also 
compare between two 
NNPs trained on the 
same data set to check 
for agreement and 
potential overfitting.

The NNP follows very closely to the equation of state predicted by 
DFT and outperforms the AIREBO potential at predicting the lattice 
constant of a pristine graphene monolayer. It is worth noting that 
equation of state calculations were included in the NNP training set.

Limitations
• The NNP is only trained for carbon and cannot be used for 

functionalized pores.

• Currently, the NNP does not handle forces well enough to drive 
nudged-elastic band (NEB) calculations. We will correct this by 
including DFT calculations for NEB in the training set.

Conclusions
• A NNP has been developed that can accurately predict the 

energies for porous structures of graphene.

• The NNP is able to be extrapolated to larger structures that 
would be too computationally expensive for a DFT calculation.

• By increasing the size and scope of the DFT training set, we can 
achieve greater accuracy with the NNP.
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