
Ken Koedinger

Professor 

HCII & Psychology


Kelly Rivers

PhD Candidate 
HCII, School of Computer Science


ITAP: The Intelligent Teaching 
Assistant for Programming


Our goal: provide novice programmers with automatic, data-driven, personalized 
feedback and hints for code-writing problems. 


We hope to supplement TA and instructor feedback with always-available 
assistance, in order to reduce frustration and increase learning in coding practice.


Abstract




Students who are novice programmers frequently need feedback and 
assistance while they're learning to code, but it is difficult to provide 
individualized help at scale, especially with growing interest in computer 
science.



To address this need, we've built ITAP, the Intelligent Teaching Assistant for 
Programming, which can automatically generate next-step hints for students 
based on data collected from the work of previous students. We're currently 
testing ITAP on practice problems in 15-110 and 15-112, the main 
introductory programming courses at CMU, with the goal of determining 
whether always-available hints can help improve student learning in the 
classroom.



We hope to eventually make ITAP generally available, to support teachers in 
designing personalized instruction and give students more opportunities for 
individualized learning.


Lessons Learned



1: Instructors may want to give students the minimal amount of help 
required, but students often want more support, and become frustrated 
when more detailed help is not provided. Students treat practice problems 
more like worked examples than independent work.



2: Different students may have different preconceptions about asking for 
help. In the more advanced classes that we studied, students seemed to 
dislike the idea of asking for hints, while in the more general classes, 
students were much more willing to ask for assistance while working. This 
could be due to different classroom cultures. Also, students like the idea of 
practicing, but have difficulty finding time to do extra (un-required) practice. 
Making practice a built-in part of the course may help alleviate this problem.



3: Even when hints provide explicit information on how to correct errors, 
novices may have difficulty understanding where the change in their 
program needs to occur. Providing more structured hints may help this.


Project Details


Student	 View.	 This	 is	 the	 online	 system	 that	 students	 interact	 with	 when	 solving	
programming	 problems.	 We	 use	 Cloudcoder,	 an	 open-source	 educa<onal	 IDE,	 to	
provide	the	general	interface.	ITAP	is	ac<vated	by	pressing	the	Feedback	buCon,	which	
sends	 a	 request	 to	 our	 system.	 ITAP	 processes	 the	 student’s	 data,	 then	 returns	 text	
containing	the	feedback	and	personalized	hint	for	the	student.	

Hint	Types.	Originally,	we	only	generated	edit	hints	(shown	at	top),	which	told	students	
how	to	edit	 their	 code	 to	get	closer	 to	a	working	solu<on.	However,	usability	 tes<ng	
showed	 us	 that	 students	 did	 not	 always	 interpret	 these	 hints	 as	 we	 had	 wished.	
Therefore,	we	used	the	ITAP	process	to	create	two	new	kinds	of	hints-	structure	hints	
(which	 show	 structural	 informa<on	while	 obfusca<ng	 low-level	 details),	 and	 solu,on	
hints	(which	display	the	personalized	goal	state	for	the	student).	

ITAP	Implementa;on.	ITAP	uses	a	data-driven	approach	to	find	the	op<mal	goal	state	
for	a	student	out	of	a	set	of	solu<ons	that	have	been	seen	before.	It	then	determines	
which	edits	the	student	needs	to	make	to	turn	their	code	into	the	correct	solu<on,	and	
translates	those	edits	into	hint	messages	for	the	student	to	read.	

Edit


Structure


Solution


program
 canonical 
state


edit chain
edit chain


hint 
message


canonicalization


path construction


reification



