Evaluating Environmental Emissions of Pittsburgh Brownfields

Presenter: Yeganeh Mashayekh

Co-authors: Chris Hendrickson, Deborah Lange,

Amy Nagengast

The Western Pennsylvania Brownfields Center Carnegie Mellon University

Pittsburgh Technology Center

Washington's Landing

South Side Works

EPA Training, Research and Technical Assistance Project

- Training working with network of Main Street and Elm Street Managers across PA
- Technical Assistance developing a multiattribute decision-making tool to assist in prioritizing sites
- Research:

What is the environmental footprint of a Brownfield development as compared to a Greenfield development?

Quantifying a Sustainable Brownfield

- Goal to evaluate life cycle implications of brownfield development vs greenfield development
- Impact on climate change until now, there has been no mechanism to quantify
- Carbon footprint as well as environmental contaminants
 NO₂, SO₂, CO, VOC's
- Base tool: EIO-LCA Model developed at Carnegie Mellon (plus other process models)

EIO-LCA

- Economic Input-Output -- "General interdependency" model: quantifies the interrelationships among sectors of an economic system
- Life Cycle Assessment -- studies analyze the environmental aspects and potential impacts throughout a product's life cycle (e.g., cradle-tograve) from raw material acquisition through production, use and disposal

Caveat Emptor

- Data reliability and quality is often questionable.
- Models based on assumptions and national level data
- Problem boundaries are often arbitrary.
- Scale issues global -> local, etc.
- Uncertainty is everywhere
- Spatial and temporal issues increase uncertainty
- Comparisons between studies difficult without pushing into study details
- Cost and time of conducting life cycle assessment study is considerable.

What to compare?

- Construction Phase
 - Remediation
 - Site development
 - Grading
 - Infrastructure improvements
 - Structures

- Use Phase
 - Private residents
 - Utilities
 - Travel
 - Maintenance
 - Common space
 - Utilities
 - Maintenance
 - CO₂ Terrestrial sequestration

How to Compare: Construction Phase

- Economic Input Output Life Cycle Assessment
- Based on dollars spent in certain economic sector data assembled by Dept of Commerce, Bureau of Economic Analysis
- 'Breakdown' construction costs into sectors that match BEA sectors
- Environmental data also maps onto sectors
 - Source: Environmental Protection Agency, Energy Information Administration

Specifically, the EIO-LCA model:

Can

- Use publicly available data
- Consider many sectors in the supply chain
- Estimate emissions on the basis of the magnitude of the effort (\$\$)

Cannot

- Differentiate between remediation and other similar construction
- Account for site specific 'greening' improvements

But, process methods might be used to supplement

Sectors that Might be Applied to BF/ GF Development

- Broad Sector: Construction
 - Manufacturing and Industrial Buildings
 - Highway, Street, Bridge and Tunnel Construction
 - Water, Sewer and Pipeline Construction
- Broad Sector: Professional and Technical Services
 - Architectural and Engineering Services
 - Environmental and Other Technical Consulting Services

Comparing a Brownfield and a Greenfield in Pittsburgh

Our Two Residential Sites

		BF: Summerset	GF: Cranberry Heights
•	Area (acres)	32	269
•	Number of Units	159	244
•	Persons per Unit	2.1	3.7
•	Living Space / Unit (average sf)	2,700	2,700
•	Distance to Work (miles)	5.4	21
•	Distance to School (miles)	2.9	6
•	Annual Private Vehicle Usage (miles)	14,700	30,450
•	Surveys Returned	40	75

Site Analysis – Interview Based

Item	Unit	Greenfield (Cranberry Heights)	Brownfield (Summerset Phase I)	% Difference from Greenfield
Initial Cost	\$ Million 2002	3.4	23.4	688
CO2E Emissions	Metric Ton (Millions)	2,200	9,090	413
Allocated Initial Cost (0% interest)	\$/person/year	74	1,176	1589
Annualized Initial Cost (5% interest)	\$/person/year	203	3,204	1578
Allocated CO2E Emissions	Metric ton/person/year	0.05	0.46	930

Site Analysis – Interview Based

Item	Unit	Greenfield	Brownfield	% Difference
		(Cranberry	(Summerset	Relative to
		Heights)	Phase I)	Greenfield
Private Vehicle	Miles/year/person	8230	7350	-11
Public Transit	Miles/year/person	2040	600	-71
Other	Miles/year/person	240	325	35
Private Vehicle	\$/year/person	4,100	3,700	-10
Public Transit	\$/year/person	580	170	-71
Private Vehicle	Mt CO2E			
GHG	/year/person	3.9	3.5	-10
Public Transit	Mt CO2E			
GHG	/year/person	1	0.3	-70

Site Analysis – Interview Based

Item	Unit	Greenfield	Brownfield	% Difference
		(Cranberry	(Summerset	Relative to
		Heights)	Phase I)	Greenfield
Average Floor	Sq. ft./residence	,	ĺ	
Space		2,700	2,460	-9
Land Area	Acres/residence	1.1	0.16	-85
Natural Gas	\$/residence	170	89	-52
Electricity	\$/residence	133	94	-29
Water/Sewer	\$/residence	79	27	-66
Total Utilities	\$/residence	382	210	-45
Total Utilities	\$/person	103	105	3
Floor Space	Sq. ft./person	730	1,230	68
Development	Acres/person			
Area		0.3	0.08	-73
Building	Mt Million	61,400	30,909	-50
Construction				
GHG				
Allocated				
Building	Mt/person/year	1.3	1.5	15
Construction				
GHG				
Utility GHG	Mt/person/year	5.9	9.6	63

Site Analyses – Internet Based

- Remediation
 - USEPA Acres
 - Sanborn Maps
 - State Environmental Databases
 - USEPA Remediation Technology Cost Compendium
- Site Preparation
 - Google earth
 - Clearing, grubbing and grading RS Means
 - Roads and utility infrastructure ARTBA (American Road and Transportation Builders Association)

Site Analyses – Internet Based

- Residential construction
 - Google earth
 - RS Means, regionally adjusted
- Operation
 - Utilities
 - Duquesne Energy Calculator
 - County Assessment webpage
 - Transportation

Preliminary Findings

- Construction phase: Emissions from brownfield site preparation efforts are greater than greenfield
 - Excess earthwork
- Use phase: Utility and travel related emissions seem to be less for brownfield residents than for greenfield residents
 - Shorter commutes
 - Smaller houses

Challenges (for instance)

- Construction Phase
 - Defining limit of remediation
 - Accounting for offsite infrastructure
 - Mapping costs to EIO-LCA sectors

Reporting units:

- ✓...per household
- ✓ ...per capita
- ✓...per acre
- ✓…per square foot of living space

- Use Phase
 - Response rate of residents
 - Accounting for common space
 - Accounting for 'school buses'

???

Transportation Using Census Commuting Data

Brownfield and Greenfield Locations

Commuting Modal Shares

Largest differences are in Individual Automobile, Public Transportation and Walking categories

Total Greenhouse Gas Emissions from Commuting

Transportation – Using TAZ Data

Data from Metropolitan Planning Organizations' Travel Demand Models

Average VMT/HH by Trip Purpose for Brownfield and Green Field Developments - Automobile Only - Pittsburgh

Average VMT/HH by Trip Purpose for Brownfield and Green Field Developments - Automobile Only - Minneapolis

