f. Microsoft Azure

Edge Video Services on 5G
Infrastructure

Ganesh Ananthanarayanan
Microsoft Azure for Operators




Real-time Video Analytics at the center of large trends
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* Edge provides bandwidth savings, privacy,
low latency, and resilience to cloud
disconnection for real-time applications !
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» Video is largest capacity consumer
v" 80% to 90% of Internet

* Monetization of investment: most
expensive 5G mid-band auction in US

network & edge
is at the center of

REAL TIME
ML ANALYTICS

 Vision ML for Business automation,
Customer engagement, Smart Cities

"The Emerging Landscape of Edge-Computing, ACM SIGMOBILE GetMobile, Mar 2020
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 Enterprise video monitoring integrated
solutions as part of loT portfolio

v By 2022, 99% of videos captured in
enterprises will be analyzed by machines



Operators are well-positioned and keen to light up video services

KEY ENTERPRISE SCENARIOS Advantage of

Operators’ position
+ Ability to offer packaged end-to-
ENTERPRISE end security solutions with device
integration
CAMERA E2E video analytics solutions are a :
NETWORKS I natural component of private 5G :
 _ network enterprise solutions ___ _,
* Aligned with operators’ promise in
SMART CITY b> Bing maps ~—  =— 5G networks of actions & insights
""::3 By, . based on live video
TRAFFIC AR L - 9 Wide geographic footprint to :
ANALYTICS I connect new cameras and upgrade !
I existing legacy camera systems :
_E;(i;tiﬁg_ leased lines to businesses |
CONNECTED * Private 5G better suited than Wi-Fi
for critical settings that required
FACTORIES OF highly reliable connectivity
* Millimeter wave spectrum easy to
THE FUTURE deploy in private setting permitting
full benefit of 5G

MICROSOFT CONFIDENTIAL



OPERATOR
INFRASTRUCTURE

Designing video analytics to be operator-focused

EDGE HIERARCHY WITH
DIVERSE HARDWARE

S Neoe ﬁ

Azure Private Edge
Percept Edge Zones with
Zones Carrier

Far and near edges:
On-prem, base stations, in-network

Requirement #1

Inter-edge orchestrator with
efficient video processing

DYNAMIC NETWORK
CONDITIONS

Wireless & edge
connections vary with time

Requirement #2

Network monitoring & adaptation
of video processing

MICROSOFT CONFIDENTIAL

EXECUTE ALONGSIDE
RAN WORKLOADS

JRAN

RAN'’s demand is elastic based on
number of active users

Requirement #3

Dynamic resource allocation by the
orchestrator for video processing




[1] Smart city traffic on 5G edge hierarchy & reistre

Car/bike/pedestrian counts & near-collisions by analyzing widely-deployed
traffic cameras

Dashboard & alerts Analytics & actuation
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(Built up on prior work with City of Bellevue)



[1] Smart city traffic on 5G edge hierarchy & reistra

Vehicular analysis over hierarchy of edges in 5G infrastructure

On-prem edge Base station In-network
device Edge Edge

BB Microsoft

B Azure

v" Six-fold reduction in network traffic between the edges in the hierarchy, thus
lowering the bandwidth needed to be provisioned

v Reduction in compute provisioning of edge devices via smart placement

v’ Vehicle counts from traffic camera videos with nearly 100% accuracy



[2] 5G Parking Services with Edge Compute Fujitsu

Parking Application: Finding parking can increase stress associated with
traveling, CO2 emission, and traffic congestion (driving in circles)

Revenue Per Space

Wi-Fi, 60 GHz, On-prem Edge

College/University

) ki LTE Network
Wi G Rocket Video
Ho:fplitals/HeaIth Care 56 ' I Ana |ytiCS
Municipal/Government l
Transportation/Transit | $857 ° . '
0 560 1OIOO 15I00 20'00 25|00 30I00 3S|00
e et Lo SN .
Sensors vs. Cameras %
v Easily extend to other Local )
applications Parking Service <« REST Service
Network .

v'Cheap to scale up



[2] 5G Parking Services with Edge Compute Frujitsu

Parking Application: Finding parking can increase stress associated with
traveling, CO2 emission, and traffic congestion (driving in circles)

Analyze live videos = detect vehicles = infer occupancies



[2] 5G Parking Services with Edge Compute

Parking Application: Finding parking can increase stress associated with
traveling, CO2 emission, and traffic congestion (driving in circles)
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Ecosystem Catalysts

Description
Project addressing an ecosystem challenge

Critical Video Analytics Use Case

Catalyst Champion
City of

: Dublin
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This talk will cover...

 Video analytlcs pipelines across edge/cloud W|th approx:mat/on

* Continuous learning of video analytics models on edge compute servers
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Cascaded video analytics pipeline

Object

SO

Background Line Light Heavy counts
. Azure
Subtraction Occupancy DNN DNN Services
Detector Analyzer Detector Detector

0
L

OpenCV

Configurations:

* Resolution

* Frames rate

* Object detector



How much do the configurations differ?
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Orders of magnitude cheaper resource demand for little quality drop



Hierarchy of clusters for video analytics

Public Cloud

_____________________________________

@ Compute Slot

E—}Wired Network
Seattle 5 . ;
T Wireless

Clusterl



1. Pick configurations for video pipelines

‘(jointly)

2. Place the modules across the
\ hierarchy of clusters /




pipeline

Solution Overview

resource-
gquality !

|

Scheduler

Public Cloud




Offline: Resource-Quality Profiling

Profile: configuration = {resource, quality}
* Ground-truth: labeled dataset or results from golden configuration

* Targeted search for promising configurations
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Offline: Pareto boundary

Pareto boundary: optimal configurations in resource demand and quality
* Non-Pareto plans cannot beat Pareto configs. in both quality & resources
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Solution Overview

video resource- |
pipeline ualit | —
4{ Profiler }Aij |." : >

Scheduler

offline i_



Evaluation Highlights

Workload

Videos from traffic cameras & surveillance cameras
* Original frame rate of 14 — 30 fps, resolution 480p — 1080p
Workload: Object tracker, DNN classifier, Car counter, License plate reader

Results
* 25x better accuracy & within 6% of optimal
Number of Machines
— Accurate == Twicg s Half Adapts to errors +160_0 ..; 200 'i'500 { 1000
;o . D _ 5l ia——
¢ in the profile £& ] PR
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Scales to many 8007000 2000 4000 8000
~0 100 200 300 400 500 . Number of Queries
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Time (seconds)



This talk will cover...

/Video analytics pipelines across edge/cloud with approximation
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* Continuous learning of video analytics models on edge compute servers
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Edge Video Analytics Setup

E Edge Box
N

GPU

GPU GPU
Shared Resource Pool

Specialized lightweight
Inference Models
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‘ Video Data
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The challenge of data drift

* Edge devices run lightweight models which have limited generalizability
* Observed data can be different than the training data, resulting in reduced accuracy
* Example — Class Distribution Shifts

Class Distribution Inference Accuracy
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Data Drift — Class Definition Shifts

Class Distribution Accuracy
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Model adaptation with continuous learning

* To counter data drift, we can adapt our models by continuously
learning on incoming data

* Retraining is done periodically (creating “retraining windows”)

—&— Continuously Retrained Model
Pretrained Model
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The cost of continuous learning

* Retraining models requires GPU-time, a precious quantity in resource constrained
environments

* To retrain, we must borrow resources from inference and reallocate them to training

 Directly impacts inference accuracy

—— |nference Job Accuracy
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The cost of continuous learning

* The cost of retraining depends on the configuration (hyperparameters)
chosen for retraining.

75 - mk—-n- ———————— -4-!-6-‘-——-
X" 8 oo -~

Hyperparameters: :\5 /0 °

* Layers to train = 70 - ? e

» Data sampling rate = (&)O °

* Learning rate 5 .

* Number of epochs :Ed 65 je0 Training Cfg

* Size of last hidden layer g --- Pareto Boundary
60 - i

0 50 100 150 200
GPU Seconds

Hyperparameters vs Cost



Scheduling Objective

Maximize mean inference accuracy over the retraining window
across all video streams

Resource capacity constraints

Subject to: .. : :
Minimum inference dCCuracy constraint




Scheduling et Lone iy’
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gy Pick Hyperparameters to train

Allocate resources between
Training and Inference
across video streams
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Ekya Thief Scheduler

@

* For each camera, evaluate all training configurations and pick the one which
gives highest predicted accuracy

e Start with a fair allocation to all video streams V

* For each thief job j € J:
* Forvictimjob k € {J - j}:
e Steal a quantum of resource 6 from k and allocate to |
* Repeat configuration selection with new resource allocation

* If expected mean inference does not improve, stop stealing from k. Else,
steal again.



Evaluation

e Two datasets — Cityscapes and Waymo — both dashcam videos of
driving in different cities

* Baselines — no-retraining and fair scheduler

* Ekya requires 4.3x fewer resources to achieve the same inference
accuracy as a fair scheduler



Ongoing work (that I did not talk about)

Cross-camera video analytics
* Large camera deployments in buildings, cities

* Spatio-temporal correlations for efficiency &
accuracy

Private video analytics as a cloud service

e Side-channel attacks leak video content

* Hybrid TEE (CPU + GPU enclaves) design for
data-obliviousness

Memory-Efficient Inference in Edge servers
 Memory is a bottleneck resource on edge servers
* Merge layers of models to reduce memory footprint

Multi-Hop mmWave Network of Cameras
* Mesh of cameras with HD videos for analytics

e Data plane with mmWave networks, control plane
with Wi-Fi




