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Abstract—We present a benchmark-driven experimental study
of autonomous drone agility relative to edge offload pipeline
attributes. This pipeline includes a monocular gimbal-actuated
on-drone camera, hardware RTSP video encoding, 4G LTE
wireless network transmission, and computer vision processing on
a ground-based GPU-equipped cloudlet. Our parameterized and
reproducible agility benchmarks stress the OODA (“Observe,
Orient, Decide, Act”) loop of the drone on obstacle avoidance
and object tracking tasks. We characterize the latency and
throughput of components of this OODA loop through software
profiling, and identify opportunities for optimization.

Index Terms—edge computing, machine learning, computer
vision, drones, autonomous robotics, wireless networks, bench-
marks, latency, throughput

I. INTRODUCTION

Fully autonomous drone flight is defined as “pre-
programmed flight without a remote human pilot, includ-
ing mission-specific actions in response to runtime observa-
tions” [1]. Achieving this on an ultralight drone via edge
offload was first demonstrated in 2023 [2]. By overcoming
the weight and size limitations of on-board drone intelli-
gence, edge offload inspires the vision of small, cheap, and
lightweight but brilliant drones operating in crowded urban
settings without a human pilot. This is attractive from a public
safety and regulatory approval viewpoint because the kinetic
energy of such drones is much lower than that of larger
and heavier drones [3]. It is also attractive from a business
viewpoint because the most expensive part of drone operations
today is the trained human pilot who has to continously fly the
drone [4]. We focus on payload-free active vision tasks [5],
[6] such as recognizing and tracking a target, rather than tasks
such as merchandise delivery that involve substantial payloads.

In this paper, we explore how close we are today to making
this vision a commercial reality. If an entirely new ecosystem
of custom-built drones and low-latency wireless networks
is needed, the path to commercialization will be long and
risky. On the other hand, if cloudlet-based deployments
with commercial off-the-shelf (COTS) components available
today can be integrated into a working system that meets the
performance and agility demands of real-world use cases, the
vision is well within reach. We therefore ask:
“Using COTS ultralight drones, 4G LTE wireless networks,
and cloudlet hardware, is the end-to-end performance of edge
offload sufficient for real-world active vision tasks?”

To answer this question, we introduce the concept of a
drone OODA Loop. Originally conceived in the 1950s to
characterize man-machine symbiosis in combat aircraft, this

concept has since been extended to many other domains [7].
The components of an OODA loop (“Observe”, “Orient,”
“Decide,” and “Act”) define the stages of any reactive pipeline
that involves a human in the loop. In this paper, we extend
this concept from its cyber-human origins to the cyber-physical
context of an autonomous drone. Viewing such an AI pipeline
through the lens of an OODA loop enables us to better
understand its performance attributes. It enables us to tease
apart latency and throughput limitations at fine granularity,
thus enabling bottlenecks to be identified and optimized.

An OODA loop’s attributes limit what a drone can do.
Because of throughput limitations, closely-spaced real-world
events may not be resolvable as separate events. A moving
target with a jerky motion will appear to move smoothly.
Large, but brief, deviations from the smoothed path may not
be detected. High end-to-end latency will also hurt agility.
Predictive approaches in drone or gimbal actuation will be
needed for tracking fast-moving targets. This leads to greater
likelihood of errors and loss of target due to mis-prediction.

A cloudlet-based drone OODA loop includes: (a) on-
drone sensing, (b) on-drone pre-processing, (c) transmission to
cloudlet, (d) processing on a (possibly multi-tenant) cloudlet,
(e) transmission to drone, (f) on-drone post-processing, and
(g) drone actuation. Through latency profiling and bottleneck
optimization, we characterize the OODA loop of the pipeline
described by Bala et al [2]. We then define parameterized and
reproducible benchmarks to quantify its agility.

This paper makes four contributions:
• First, it introduces the concept of a drone OODA loop.
• Second, it profiles latency in a cloudlet-based drone

OODA loop, and shows how it can be optimized.
• Third, it describes parameterized and reproducible agil-
ity benchmarks that mimic real-world active vision.
• Fourth, it presents experimental results that quantify
agility relative to OODA loop latency and throughput.

II. BACKGROUND AND RELATED WORK

A. Networked Control Systems

Over the last twenty years, networked control systems have
seen significant advancements within the field of robotics. As
described in the book Networked Control Systems: Theory
and Applications by Wang et al, a networked control sys-
tem (NCS) is a system that “consists of sensors, actuators,
and controllers whose operations are distributed at different
geographical locations and coordinated through information
exchanged over communication networks” [8]. NCS have been
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used in many robotics applications, from planet exploring
rovers [9] to driverless vehicles [10]. Recently, they have also
been applied to drones [11]–[14]. In these systems, drones
use a ground station in conjunction with other nearby aircraft
to offload high compute loads. However, previous work either
focused on the theory of how such a system should be designed
or on solutions using custom components. In contrast, our
work explores whether COTS-based solutions can be made
sufficiently performant for edge offload in real drone flight. A
specific contribution of the current paper is to deeply analyze
the performance limitations of such a COTS-based solution.

B. The OODA Loop

In his 1986 work Patterns of Conflict [15], Colonel John
Boyd formalized the concept of an OODA loop which had
been used since the 1950s to study a pilot’s reaction time
in combat. Since then, it has been used to model reaction
time in a variety of military settings. In recent years, some
research has started using the OODA loop to analyze human-
AI hybrid decision-making pipelines [16], [17]. As mentioned
earlier (§I), a key contribution of this paper is the extension
of the OODA loop concept from its cyber-human origin to the
cyber-physical context of an autonomous drone.

C. Drone Benchmarks

There have been many efforts in the computer vision
and machine learning community to create benchmarks for
comparing drone performance on specific tasks. These focus
exclusively on the accuracy of algorithms such as drone-
based object tracking and face recognition, ignoring system
attributes such as agility and end-to-end processing latency.
Du et al [18], Li et al [19], Kalra et al [20], and Zhao et
al [21] are examples of this genre.

Many drone benchmarks do measure agility but involve only
simulated tests. MAVBench [22] is one popular example. It
consists of a closed-loop simulator and end-to-end application
benchmark suite of five workloads pertaining to scanning,
aerial photography, package delivery, 3D Mapping, and Search
and Rescue. These workloads lack customization options,
and often represent a specific simulated scenario which can
only give limited perspective on real performance. Another
simulation-based benchmark, FlightBench [23], has agility
workloads which provide several levels of difficulty. However,
this difficulty is determined arbitrarily by the authors and
the obstacle courses are too complex to practically replicate
outside of the simulator. Additionally, simulations typically do
not fully capture real flight performance, where sensors can
experience noise which can influence actuation.

There are live flight drone benchmarks that measure agility,
but they are not as common. One example is the disturbance
benchmark proposed by Wu et al [24] which uses an indoor
course along with a fan to emulate obstacle avoidance in windy
conditions. The course is fixed and does not provide guidance
for replicating the described experiments. For this reason,
while it is useful for evaluating the paper’s proposed trajectory

Fig. 1: Edge Offload Pipeline

planner, it is not as useful for measuring the performance
differences between different avoidance methods.

Koubaa et al [25] describe an experimental study that
compares on-board drone processing versus offloading to
the cloud. The metrics of interest in their work are energy
cost, bandwidth demand, and timeliness of results. The last
of these metrics is closest to our focus on the agility of
drones. However, the experiments described do not include
drone actuation in response to real-time observations. They are
purely open loop experiments, with timeliness to cloud users
being the metric of interest. Further, this work only provides
microbenchmarks to evaluate these metrics. There are no end-
to-end benchmarks that include the full OODA pipeline of
sensing, processing and drone actuation.

Beyond these experimental efforts is a vast body of pub-
lished literature on analytical or simulation-based evaluations
of algorithms for specific drone tasks. Examples include the
work of Chen et al [26], Hayat et al [27], Wang et al [28], and
Wu et al [29]. These studies abstract away the physical drone,
relying instead on hypothetical cost models of processing and
communication. AdaDrone [30] is a slightly more realistic
approach that leverages a drone simulator. None of these
efforts use real drones, with their intrinsic limitations of weight
and maneuverability. In contrast to these prior works, the focus
of this paper is on providing parameterized and reproducible
benchmarking of drones in actual flight.

III. PROFILING & OPTIMIZING THE OODA LOOP

We replicate the setup (Figure 1) described by Bala et
al [2] using a slightly larger and heavier variant (550 g vs.
360 g) of the Parrot ANAFI drone. This variant is approved
on the BlueUAS list [31] for US government applications. As
payload, we use the 53 g Onion Omega 2 LTE [32] single
board computer which was briefly described in that paper.
The Onion Omega receives the sensor stream from the drone
over WiFi and forwards it to the cloudlet over 4G LTE. The
resulting computation for Orient and Decide (e.g. DNN model
inference) causes a control message to be sent back via 4G
LTE to the Onion Omega, and thence over WiFi to the drone.
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Fig. 2: Detailed View of Our OODA Loop
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Only items in red above can be measured.

a = on-drone sensing e = transmission to drone
b = on-drone pre-processing f = on-drone post-processing
c = transmission to cloudlet g = drone actuation
d = processing on cloudlet

Fig. 3: Measurable Components of Our OODA Loop

The drone to cloudlet pipeline is used for both data plane
and control plane operations. Its intrinsic end-to-end perfor-
mance defines the experimental baseline. To explore pipeline
degradation, we add network latency using FireQoS [33] and
drop frames to throttle bandwidth.

A. Mapping the OODA Loop

Figure 2 maps our end-to-end pipeline to OODA loop
components. Components (a), (b) and (c) together map to
the “Observe” phase; component (d) maps to its “Orient” and
“Decide” phases; and, components (e), (f) and (g) together
map to the “Act” phase. Due to closed-source restrictions
of our COTS pipeline, some OODA loop components have
to be aggregated for purposes of measurement, as shown by
Figure 3. Total end-to-end latency is given by the sum of these
components; total throughput is that of its bottleneck.

The earliest point in the pipeline where software instrumen-
tation can be inserted is between the Wi-Fi and LTE interfaces
on the Onion Omega. The Wi-Fi part of this pipeline is thus
attributed to Observeab rather than to Observec. Similarly, on
the return path, the Wi-Fi part is attributed to Actfg rather than
to Acte. Only LTE transmission is attributed to Observec and
Acte. The resulting error is likely to be very small since Wi-Fi
is much more performant than LTE. We present our detailed
measurements in §III-B to §III-F.
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Fig. 4: Observeab Measurements

B. Observeab

Our drone is a commercial product that uses black box
hardware and software to seamlessly integrate (a) and (b).
Its camera creates a stream of raw video frames. On-board
processing transforms these raw frames into a sequence of
UDP packets that slice-encode a 720p H.264 RTSP video
stream at 30 fps [34]. Neither the resolution nor frame rate
of this video stream are configurable. The slice encoding aims
to reduce the visual impact of UDP packet loss. The black box
nature of this transformation makes attribution of latency costs
difficult. It is not possible to insert instrumentation to separate
(a) and (b); they merge into an indivisible component.

Figure 4 presents our measurements. The latency distribu-
tion has a mean of 253 ms, with a standard deviation of 12 ms
and a p99 of 277 ms. Instantaneous throughput has a mean
of 31 fps, with a standard deviation of 5 fps and a p1 of
22 fps. Due to streaming, throughput can be higher than the
reciprocal of latency. The short WiFi Observeab segment is
partly responsible for this observed variation.

C. Observec

As Figure 1 illustrates, the wireless network path from drone
to cloudlet consists of a very short Wi-Fi segment, transit
through the Onion router carried as payload, and then a longer
4G LTE segment to the cloudlet. Figure 5 presents the latency
and throughput distributions of Observec. Its latency has a
mean of 39 ms, with a standard deviation of 8 ms and a p99
of 60 ms. Instantaneous throughput has a mean of 16.3 Mbps,
with a standard deviation of 1 Mbps and a p1 of 14.4 Mbps.
Since 720p video at 30 fps only demands an average bit rate of
about 6.5 Mbps [35], Observec is definitely not the bottleneck.

D. Orient+Decided

Processing on the cloudlet involves three stages:
• Stage-1: Decoding the UDP packet stream to produce
individual frames from H.264 video.
• Stage-2: Application-specific processing of each frame
to interpret its contents. For example, this could involve
DNN inferencing with a pre-trained model to detect
objects of interest currently visible to the drone.
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Fig. 5: Observec Measurements
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Fig. 6: Original FFmpeg-based Stage-1 Performance

• Stage-3: Application-specific logic to determine salient
changes revealed by Stage-2. This early part of Stage-3,
together with Stage-1 and Stage-2, constitute the “Orient”
part of the OODA loop. The rest of Stage-3 is the
“Decide” part. Drone actuation (if any) is determined, and
the command to perform this actuation is generated. For
example, Stage-2 may show that an object being tracked
has moved and the gimbal has to be adjusted to re-center
the object in the camera’s field of view (FOV).

Stage-2 can be viewed as perception and Stage-3 as cognition.
The latency and throughput of Stage-1 constrain the perfor-
mance of Orient+Decided since decoding has to be performed
even if Stage-2 and Stage-3 take a negligible amount of time.

Figure 6 presents our measurements of Stage-1. We were
surprised by the magnitude of the latency, with a mean of
541 ms. Our cloudlet has two Intel Xeon processors with a
total of 36 cores, 128GB of RAM and an NVIDIA GeForce
GTX 1080 Ti GPU. This should be ample for efficient software
decoding of an H.264 video stream, as confirmed by the mean
throughput of 62 fps shown in Figure 6(b). The high latency
observed has no obvious explanation, but it has a large negative
impact on the OODA pipeline. As detailed elsewhere [36], we
determined that the culprit was negative latency scaleout of
FFmpeg when performing single stream decoding (Figure 7).

By switching to different decoding software [37], we were
able to reduce the latency from a mean of 541 ms in Fig-
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Fig. 7: Negative Scale-out of FFmpeg Latency
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Fig. 8: Improved Performance With FFmpeg Alternative

ure 6(a) to a mean of 32 ms in Figure 8(a). This has been
achieved with a mean throughput of 37 fps (Figure 8(b)),
which is well above the demand of 31 fps from Observeab. As-
suming negligible processing in Stage-2 and Stage-3, Figure 8
shows the best-case latency and throughput of Orient+Decided.

E. Acte
Figure 9 presents our measurements of the wireless network

path from cloudlet to drone. The latency has a mean of 30 ms,
with a standard deviation of 4 ms and a p99 of 49 ms.
The throughput has a mean of 28 Mbps, with a standard
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Fig. 9: Acte Measurements
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Actfg , the reciprocal of its latency is used as its throughput.

Fig. 11: OODA Loop Latency & Throughput

deviation of 3.7 Mbps and a p1 of 19 Mbps. Since no video
is transmitted back to the drone, Acte is not a bottleneck.

F. Actfg
Black box hardware and software on the drone seam-

lessly integrate components (f) and (g). All that is exter-
nally visible is a set of commands that are accessible via
the drone’s SDK [38]. The processing of a command and
initiation of actuation are integrated into Actfg in Figure 3.

Run Latency (ms)

1 188
2 170
3 162
4 189
5 155

Mean 173 ±15

Fig. 10: Actfg Latency

In this context, latency corre-
sponds to the time difference be-
tween the receipt of an actuation
command by the drone, and the
start of actuation. To measure this
difference, we position the sta-
tionary drone in front of a display
connected to the cloudlet. The
display shows the current times-
tamp in milliseconds. We send a
command to the drone to move
its camera gimbal, while recording the display and gimbal
using a slow-motion video camera. In post-processing, we
manually identify the timestamp of the command and that
of the first video frame showing gimbal movement. Actfg
latency is the difference between these two timestamps. Our
slow-motion camera operates at 240 fps, resulting in a frame
interval of ˜4 ms. Our measurement has an error margin of ˜5
frames, translating to experimental error of ˜20 ms.

Figure 10 presents our measurements. The latency distribu-
tion has a mean of 173 ms, with a standard deviation of 15 ms.
Electromechanical actuation is far slower than processing or
network transmission, and there is no concept of streaming.
Our benchmarks do not involve any back-to-back actuations
without intervening sensing and processing. Hence, throughput
is best interpreted as the reciprocal of latency.

G. The Full OODA Loop

Using the same notation as Figure 3, a visual summary of
the measurements reported in §III-B to §III-F is shown in
Figure 11. This captures the best-case OODA loop, where
no time is spent in Stage-2 and Stage-3 of Orient+Decided. In
practice, it is those stages that perform the processing for drone
autonomy such as object detection, object tracking, Kalman

filtering, and route planning. They also do the processing to
generate the commands for drone actuation such as gimbal
movement, flight path alteration, or altitude change. The height
and width of the resulting Orient+Decided component in
Figure 11 would need to be scaled to include such application-
specific processing. In some cases, that component may dom-
inate the entire OODA loop.

In a typical application, many iterations of the OODA loop
may involve no actuation, thus eliminating Acte and Actfg .
For example, consider a target that is moving in a straight
line at constant speed. Successive OODA loops of a drone that
is following that target only need to confirm that it remains
centered in the FOV. Only abrupt change of motion by the
target will stress the OODA loop. Fast reaction is then needed
to discover that the target is off-center, and to actuate the
gimbal or drone to re-center it before it is lost from the FOV.
Figure 11 shows that the latency and throughput of Observeab
are the limiting constraint in uneventful settings. It is thus the
inherent attributes of the drone, rather than network bandwidth
or the cloudlet processing power, that limits us today.

IV. MEASURING AGILITY

“What is the agility of an autonomous drone whose
OODA loop is shown in Figure 11?” That is the central
question of interest. Unfortunately, answering that question is
difficult because we do not have a yardstick for measuring
agility in outdoor flight settings. Although drone racing is
popular, the races are typically tests of human piloting skill.
There is no reproducible metric for outdoor autonomous drone
agility that defines the units in which to express an answer.

Agility is a complex emergent cyber-physical property that
depends both on cyber properties such as latency, throughput,
and accuracy of the OODA loop, as well as physical properties
such as the drone’s size, weight, thrust, lift, drag and moment
of inertia. Under benign conditions, a non-agile drone may
do as well as an agile one. Only under adversarial conditions
does the cost of agility become valuable. This cost may include
increased size, weight, and bandwidth/latency demand arising
from the need to be faster and more accurate in sensing and
actuation. The only way to quantify this complex property is
to stress a drone on a precisely-defined task in a reproducible
environment, and to use task-level metrics as surrogates for
agility. This leads directly to the creation of benchmarks for
evaluating autonomous drone agility.

We define two agility benchmarks in this paper. The first
benchmark (§V) embodies obstacle avoidance in tight spaces.
The adversarial aspect of this benchmark lies in the close
proximity of obstacles, the need to sense them in real time
(e.g., to account for wind effects), and occlusion that prevents
full foreknowledge of the optimal flight path. The second
benchmark (§VIII) embodies tracking of an object that moves
in an unpredictable manner, with many abrupt changes. The
adversarial aspect of this benchmark lies in the existence of an
active mobile agent that randomly changes its trajectory. Both
benchmarks are parameterized, thereby enabling many levels
of difficulty within a common benchmark framework.
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A valuable extension of our work would be to add the ability
to control external disturbances such as wind velocity using the
method proposed by Wu et al [24]. This would be straightfor-
ward for the physically compact avoidance benchmark (§V),
but more challenging for the tracking benchmark (§VIII)
because it covers a larger open area.

V. OBSTACLE AVOIDANCE: BENCHMARK

A. Importance of Task

Obstacle avoidance is vital for drone flights at low altitude
(up to a few hundred feet) in urban or forested settings.
Otherwise, being restricted to only high altitude flight impairs
visual detections and hides many details. The most dangerous
obstacles are typically trees, lightposts, and telephone poles,
which can easily reach altitudes usually used by drones. Being
relatively thin, they are difficult to detect from afar.

Efficient avoidance of such obstacles is a challenge. Since
drone flight is limited by battery life (typically on the order
of 30-50 minutes), bypassing obstacles without wasting too
much flight time is important. If flight is too slow or avoidance
maneuvers are too convoluted, mission performance will be
impaired. At the same time, reckless flight could be catas-
trophic. Striking the right balance between safety and speed
for the given flight conditions is essential. Since effective but
rapid avoidance of obstacles is a valuable capability in a drone,
this task is a good candidate for an agility benchmark.

B. Benchmark Requirements

A good benchmark for this task should capture the essential
difficulty of obstacle avoidance. It should be parameterized,
so that it is easy to vary the difficulty of the benchmark. The
benchmark should only use standardized, off-the-shelf compo-
nents that can be easily purchased or fabricated. There should
be no ambiguity in the experimental setup or interpretation of
results, thereby simplifying independent attempts to reproduce
published experimental results. §V-C presents our candidate
benchmark that meets these requirements.

C. Benchmark Description

To emulate tall and skinny obstacles such as lightposts, we
use 1.8 m long drone racing flags (Figure 12). The flags are

Fig. 12: Flag

arranged in a precisely-defined slalom pat-
tern (Figure 13), that forces a drone to se-
quentially evade several obstacles. The diffi-
culty of the course is controlled by a spacing
parameter, w, that determines the separation
of the flags along both the azimuth and
range axes. A smaller value of w defines
a more difficult course because of higher
density of obstacles in both directions. All
our experiments were conducted with 4 tiers
of obstacles. Adding more tiers to make the
obstacle course longer, while preserving ob-
stacle spacing, would add further difficulty
to the course. The drone’s goal is to navigate the course as fast

as possible, without touching the flags or striking a flagpole.
The metric of interest is the transit time through the course.

To execute this benchmark, the obstacle course is set
up as in Figure 13. The drone is placed on a pad that

Fig. 13: Course Layout

is centered 4 m in front of
the leading line of flags. A hu-
man spotter stands a safe dis-
tance behind the drone, and a
human timekeeper is positioned
along the finish line. The remote
pilot-in-command (RPIC) contin-
uously monitors the video stream
from the drone, and stands ready
to wrest back manual control
if the drone’s autonomous flight
software appears to be getting it into trouble. Such a manually
aborted flight is scored as “Did Not Finish (DNF).” A flight in
which the drone touches a flag or pole is also scored as DNF.

The drone takes off and then hovers at an altitude of 1 m.
It is then directed to autonomously move to a destination
beyond the obstacle course. When forward motion begins, the
spotter visually signals the timekeeper to start a stopwatch.
The spotter then follows the drone through the course, warning
the RPIC of imminent collision, if any. Such a warning aborts
the experiment without damage to the drone. On a successful
flight, timing is stopped as soon as the trailing end of the drone
crosses the finish line. We deem an obstacle spacing, w, as
viable if the drone successfully flies through the course on at
least 80% of its attempts. The average time of these successful
flights at the smallest viable w is the figure of merit. For small
values of w, a more agile drone can fly more aggressively
and therefore requires less time to complete the benchmark.
However, at higher values of w, agility may not be important
because the obstacle course is so easy.

D. Benchmark Scoring

The average time, tavg, for multiple experimental runs at
the lowest viable w is a raw measure of agility. However, this
needs to be normalized with respect to attributes other than
agility. For example, a drone whose top speed is low relative
to other drones may be penalized unfairly when measuring
agility. A low value of tavg in that case is not due to a poor
OODA loop, but simply reflects the “brute force” attribute of
top speed. The normalization is performed by removing flags
from the course and conducting a control experiment at top
speed. We denote the average time for multiple runs of the
control experiment as tmin. The score, Sw, is then given by:

Sw =
tmin

tavg
(1)

Scores for this benchmark thus lie in the interval 0 < Sw ≤ 1
where Sw = 1 is the best possible score. A score of 0 is
awarded when a drone cannot achieve a successful completion
rate of at least 80% of the runs for the given value of w.
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(a) Raw Input (b) Output of Our Algorithm

Fig. 14: Monocular Obstacle Avoidance Using MiDaS

Model Latency (ms) Throughput (fps)

MiDaS Small 61 10
DPT Hybrid 105 8
DPT Large 132 7

These numbers were obtained on the cloudlet described in §III-D

Fig. 15: Inference Speeds of MiDaS DNN Models

VI. OBSTACLE AVOIDANCE: DEPTH SENSING

Some drones utilize stereo cameras or LIDAR to detect and
avoid obstacles. These give accurate depth data (i.e., distance
to objects), allowing the drone to map out its environment
and to calculate optimal collision-free trajectories. Since our
drone is only equipped with a monocular camera, it cannot
infer depth via simple geometric methods. We therefore use a
DNN-based algorithm called MiDaS [39] to provide relative
depth estimates. Using MiDaS on each frame received by the
cloudlet, we construct the inverse relative depth map. Based on
the rate of change of relative depth across frames, we identify
obstacles in the flight path and actuate away from them.
Figure 14(a) shows an input frame from one of our flights, as
the drone approaches the obstacle course. Figure 14(b) shows
the depth-encoded output of our algorithm on this frame.
The drone actuates towards the green dot using a tuned PID-
loop [40] to avoid the closest flags. Once past these flags, it
re-computes a new safe objective towards which it can fly to
avoid the second tier of flags. It repeats these steps until it is
past all obstacles. This simple approach to obstacle avoidance
serves as a good experimental baseline. Future work could
benchmark more sophisticated avoidance algorithms such as
those proposed by Wu et al [24].

For this task, the OODA loop determines the speed and
accuracy with which the drone can acquire fresh frames,
execute the MiDaS algorithm on them, calculate new headings
for safety, and perform actuations towards those headings. In
the context of §III-D, MiDaS represents Stage-2 of cloudlet
processing. Stage-3 is the processing of MiDaS output to de-
termine a new heading, and generating the actuation command.

We explore three DNN variants of MiDaS that vary in accu-
racy and speed: MiDaS Small, DPT Hybrid, and DPT Large.
MiDaS Small prioritizes throughput and inference latency at
the cost of lower accuracy. DPT Hybrid strikes a compromise
between speed and accuracy. DPT Large prioritizes accuracy
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Fig. 17: Human Pilot

above all else. Figure 15 shows the inference latency and
throughput of these three models on our cloudlet. It is not
a priori obvious which model is best for obstacle avoidance.
We therefore explore use of all three in our experiments.

VII. OBSTACLE AVOIDANCE: RESULTS

A. Baseline

The most basic questions in our evaluation are as follows:
• What is the smallest value of w for which our drone can
successfully complete the benchmark?
• At that w, how fast is benchmark completion?
• As w is increased, how much faster is the drone able to
complete the benchmark?

Our initial experiments showed that 2 m is the smallest
value of w that meets our criterion for successful benchmark
completion (i.e., at least 80% of the flights are successful).
Using the scoring criterion described in §V-D, Figure 16 shows
how well our drone did for w set to 2 m, 2.5 m, and 3.0 m.
The results shown are the mean of 5 runs of each experiment.
For each value of w, the drone results were obtained with
the choice of MiDaS model that gave the best results. These
choices were DPT Large for w =2 m, and MiDaS Small for
w = 2.5 m and w = 3 m. The scores of 0.13 to 0.2 show
that the drone suffers almost an order of magnitude slowdown
when avoiding obstacles, relative to its unimpeded traversal
of the course. This is the price of having to execute the
OODA loop shown in Figure 11, with the additional Stage-2
and Stage-3 processing for depth estimation described in §VI.
As w is increased from 2 m to 3 m, Figure 16 shows the score
improving from 0.13 to 0.2. This confirms our expectation that
less challenging courses are faster to traverse.

Since humans are the standard against which AI systems
are measured, we ask how well a human pilot does under
identical conditions. To explore this, an experienced RPIC
with several dozen hours of flight time on the Parrot ANAFI
platform manually executed the benchmark for the same values
of w.1 The OODA loop is now cyber-human: the RPIC uses
the drone’s live video stream to manually fly it. Of course,
a human also has foreknowledge of the obstacle course and
can subconsciously leverage that knowledge in planning the

1No IRB approval for human subjects was required for this experiment
since the pilot is an author of this paper.
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Fig. 18: Impact of MiDaS Model on Avoidance Benchmark

drone’s flight. In contrast, the autonomous drone is purely
reactive — what it sees right now is all that it knows.

Figure 17 presents our results. Relative to unimpeded traver-
sal of the course, the scores of 0.76 to 0.46 show that even
the RPIC suffers a slowdown. However, the slowdown is
much smaller than that suffered by the autonomous drone in
Figure 16. Since the drone hardware and wireless network
are identical in the two sets of experiments, the difference is
clearly due to the superior OODA loop of the human. There
is clearly ample headroom for improvement of our drone’s
OODA loop. Exact attribution of the observed difference to
different parts of the OODA loop will require more study.

B. Impact of Model Accuracy

The availability of the different MiDaS models shown in
Figure 15 leads to the question:

• Is accuracy or speed more important?
Our experiments indicate that there is no simple answer to this
question. The results in Figure 16 were obtained using the best
MiDaS model for each value of w. MiDaS Small performs the
best on the 3 m course but worst on the 2 m course. DPT Large
is the inverse, performing best on the 2 m course and worst on
the 3 m course. DPT Hybrid stays consistently in the middle
for all three courses. The fact that different models had to be
used in each case to obtain the best results indicates that there
is no single “best” model.

We conducted a set of experiments to better understand
this tradeoff space. The results in Figure 18 show the score
achieved on the benchmark for each model and value of w.
Since MiDaS Small focuses on throughput and low latency
over accuracy, a drone that uses it is able to sustain a higher
maximum speed than one using DPT Large. At w =3 m, the
course is sufficiently easy that the increased risk of collision
is small. The higher accuracy of a better model is not useful.
However, at w =2 m, the increased likelihood of collisions
makes higher model accuracy worthwhile. Now, DPT Large
attains the highest score. For a tight course, it is difficult to
travel at high speed without collisions. Hence, a model that
can navigate the gaps better gets a higher score.

C. Impact of Latency & Throughput

The results presented so far reflect best-case conditions.
In practice, the wireless network or the cloudlet may suffer
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Fig. 19: Impact of Latency and Throughput on Avoidance

degradation due to multi-tenancy. This leads to the question:
• What is the impact of latency or throughput degradation
of the OODA loop on benchmark score?

The baseline scores (§VII-A) reflect what is achievable with
an OODA loop whose latency is the sum of three components:

• a lower bound of 527 ms (Figure 11).
• the latency of the relevant MiDaS model (Figure 15).
• a small additional overhead (<1 ms) for Stage-3 pro-
cessing in the Decide part of the OODA loop.

This total end-to-end latency is on the order of 600–650 ms.
For OODA loop iterations that involve drone actuation, the
bottleneck throughput is the smaller of 6 fps for Actfg (§III-F)
and the throughput of the MiDaS model (Figure 15). This is
effectively 6 fps, regardless of model. If no drone actuation
is involved, the bottleneck throughput becomes that of the
MiDaS model. Since even MiDaS Small has lower through-
put than Observeab, Observec, or best-case Orient+Decided,
throughput is always in the 6–10 fps range.

Figure 19(a) shows how benchmark score drops as latency
is artificially added to the OODA loop. Even 250 ms of
additional latency (i.e., a roughly 35–40% increase from
baseline) causes benchmark score to drop to nearly half its
baseline value, for all values of w and regardless of MiDaS
model. If 500 ms of latency is added, the score drops further.
For the most challenging course (w = 2 m), the score drops to
zero because not even 80% of the flights are successful. These
results are consistent with a long-standing design principle of
deeply-immersive closed-loop interactive systems: increased
latency is deadly, even if throughput remains good.
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Figure 19(b) shows how benchmark score drops as the
throughput of the OODA loop is artificially reduced from its
baseline value. Reducing throughput to 3 fps causes bench-
mark score to drop to nearly 40–50% of its baseline value.
A further drop is observed when throughput is reduced to
1 fps. For w = 2 m, the benchmark score drops to zero. These
results confirm that latency is not the sole determinant of task
performance in an OODA loop — throughput also matters.

VIII. VISUAL OBJECT TRACKING: BENCHMARK

A. Importance of Task

In visual object tracking, a drone follows a moving target
and tries to keep it centered in its FOV. Many surveillance-
related instances of this task, where the target may be ad-
versarial and actively try to escape tracking, occur in law
enforcement and military settings. The task is also relevant
to wildlife conservation research, where an animal of an
endangered species is identified and followed in the wild. It is
also used in filmmaking to capture evolving scenes. In such use
cases, using an autonomous drone for tracking could reduce
attention demand on mission personnel.

B. Benchmark Requirements

The size and visual appearance of a target plays an impor-
tant role in tracking success. An object that is just a few pixels
in size from the altitude of the drone will be inherently difficult
to detect [41]. Poor contrast with the background, as happens
when camouflaged, also contributes to poor detection. Objects
that are hard to detect are also hard to track, since actuating
to re-center the target in each frame is key to success. The
object being tracked and the background on which it moves
both need to be specified. Only when these factors and drone
optics are held constant will OODA loop performance come
to the fore in determining tracking performance.

The other benchmark requirements for tracking are similar
to those described for obstacle avoidance (§V-B). Parameteri-
zation that controls the difficulty of the task is valuable. Use
of standardized, off-the-shelf components and careful attention
to reproducibility of results are important.

C. Benchmark Description

Fig. 20: Target

The object followed in our tracking
benchmark is a DJI Robomaster S1
robot [42]. This robot is roughly the
size of a small dog (Figure 20), and
can be programmed to follow a predefined route. As shown
in Figure 21, tracking is done on a level, green background
such as a football field. For this combination of target and
background, DNN-based object detection from an altitude of
10 m is successful at a confidence level of 0.9 or higher on
frames from our drone’s video camera.

Our benchmark is a random walk with turns in a randomly-
chosen cardinal direction at each step. Figure 22(a) shows one
example with 5 steps, and Figure 22(b) shows other examples
with more steps. The benchmark has three parameters: the
number of steps; the mean length of each step; and the target

speed of 1.5 m/s, 2.5 m/s, or 3.5 m/s. The benchmark could
be made more complex by making the turns to be at any
angle rather than just cardinal directions, and by making step
size and target speed non-uniform. All our experiments were
conducted across the full range of speeds, using a stepcount
of 35 steps and stepsize set to 5 m.

To execute the benchmark, the target is placed in a large
open outdoor area. The drone is manually piloted to the desired
altitude, and its FOV is adjusted to center the target. Once
the drone has locked onto its target, the target is instructed
to start its pre-programmed random walk and a timekeeper
starts a stopwatch. The experiment continues until one minute
has elapsed or the drone loses the target from its FOV. The
termination time and the black box footage of the flight are
logged for post-flight scoring (§VIII-D).

D. Benchmark Scoring

In postprocessing after a flight, we score the recorded video
footage using an automated process. Figures 23 to 25 show the
scoring calculation, using Figure 26 as an example. On each
frame, a DNN is first used to create a bounding box around the
target. With the center of the frame as the origin, the relative
distance of the target from the origin is obtained. Using the
notation shown in Figure 23, the pixel offset vector, ~O, gives
the L2 distance of the target’s centroid from the origin. This
is scaled to the vector dimension, ~D, of the bounding box
to give the centering ratio ci (formula 2). We then calculate
the score of the frame, si, by using an inverse exponential,
as shown in formula 3. The rationale for using an exponential
is to super-linearly penalize distance from origin. We use a
compounding 10% penalty in reporting our results, leading to
the value of 1.1 in formula 3. Using sn to denote a penalty
of n%, Figure 25 shows the scores for penalties of 10%, 20%
and 30% for the example frame in Figure 26. A score of zero
is awarded when the frame does not contain the target at all,
or if the target is too small to be detected in post-processing
by a specified model. In our case, this model is YOLOv5x
trained on aerial images of the target.

From the per-frame scores, the entire flight is scored by
simple averaging (formula 4). The overall score, savg, lies
between 0 and 1, with higher being better. For example, an
average score of 0.70 based on s10 is achieved when the drone
is able to keep the target within about three normalized lengths
of the center of the FOV for the entire duration of the flight.

The bounding box shows target detection at a confidence level of 0.9.

Fig. 21: Background for Object Tracking Benchmark
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(a) Detail for 5-Step Example (b) Other Examples

Fig. 22: Parameterized Random Walk

Fig. 23: ~O & ~D

ci =
∥∥∥ ~Oi

∥∥∥ /∥∥∥ ~Di

∥∥∥ (2)

si = 1.1−ci (3)

savg =
Σn

i si
n

(4)

Fig. 24: Calculating Score∥∥∥ ~O∥∥∥ = 0.11,
∥∥∥ ~D∥∥∥ = 0.03, c = 3.67

s10 = 1.1−c = 0.70
s20 = 1.2−c = 0.51
s30 = 1.3−c = 0.38

Fig. 25: Scoring Figure 26

Fig. 26: Example Frame for Scoring

Model Latency Throughput mAP
(ms) (fps)

YOLOv5s 28 25 56.8
YOLOv5m 37 20 64.1
YOLOv5l 42 20 67.3

The inference and throughput were obtained on our cloudlet (§III-D). The
mean average precision (mAP) is from the YOLO documentation [43].

Fig. 27: YOLOv5 Performance in Our Pipeline
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IX. VISUAL OBJECT TRACKING: ALGORITHM

Edge offload to a powerful cloudlet enables tracking via
DNN inferencing on every frame received. This “brute force”
approach eliminates the need for predictive heuristics, such as
those based on optical flow algorithms. Heuristics are often
needed by on-board tracking implementations because the
computational demand would otherwise be too high. The brute
force approach makes tracking robust with respect to transient
occlusions. Flow-based approaches, in contrast, are typically
unable to reacquire the target after occlusion ends.

In our system, the cloudlet inferences each frame through
an object detection DNN. The highest confidence bounding
box is then chosen as the target, and its offset from the center
of the frame is calculated in field-of-view degrees. The drone
then actuates according to a PID-loop [40] based on the offset
error. This simple approach provides a good baseline at low
complexity. More sophisticated algorithms such as dynamic
Kalman models [44] can be benchmarked in the future.

Figure 27 shows the latency, throughput and accuracy of the
three DNN models that are used for tracking in our system.
Even using the slowest of these as Stage-2 of Orient+Decided
only adds 42 milliseconds of latency to the base value of
527 ms (Figure 11). Its throughput of 20 fps is well above that
of the bottleneck (Actfg). However, there may be situations
where load on a multi-tenant cloudlet may need to be reduced,
and the smaller models may be valuable for that purpose.

X. VISUAL OBJECT TRACKING: RESULTS

A. Baseline

The basic question we ask about tracking is as follows:
• How well does our platform follow a target that makes
random, rapid changes in direction?

As Figure 28 shows, our platform is able to track the target on
our benchmark even at the fastest speed (3.5 m/s) without ever
completely losing it. However, as the scores show, the target
is off-center in some frames at all speeds. As target speed
decreases, the score achieved shows a modest improvement.
The results shown here are based on the best model for each
speed. This dependence is explored further in §X-B.

As in the case of obstacle avoidance, we ask how well an
experienced human pilot performs under identical conditions.
The pilot is held constant from §VII-A. Figure 29 shows how
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well the human pilot scored on the benchmark. Comparing
Figures 28 and 29, we see that the autonomous drone and
the human are comparable at 1.5 m/s, but at higher speeds the
autonomous drone outperforms the human. This is in contrast
to obstacle avoidance (Figures 16 and 17), where the human
consistently outperformed the autonomous drone. We conjec-
ture that at least part of this difference is attributable to the fact
that the obstacle course is static, and hence subconscious pre-
planning by the human helps in navigating it. In contrast, the
human is no better than the drone in anticipating random turns
made by the target. At higher speeds, raw reaction speed (i.e.,
the OODA loop) is all that matters, and the autonomous drone
proves to be better in this regard.

B. Impact of Model Accuracy

Since multiple DNN models are available to use in track-
ing (Figure 27), we ask the following question:

• Does the use of a better model improve tracking?
Figure 30 presents our results. For any given speed, there is
little difference across models. The increased cloudlet load of
a more accurate model does not pay off. However, it should be
noted that this observation may only be true for this specific
tracking benchmark. As described in §VIII-C, the benchmark
is defined as being conducted in an open area free of clutter.
If we were to create a different tracking benchmark that
embodies extensive clutter (such as that of a busy street filled
with moving cars, bicycles, and pedestrians, along with static
objects such as parked cars and trees), the results may be quite
different. In that case, the improved accuracy of the larger
models may prove decisive. We plan to explore the creation
of such a benchmark in our future work.

C. Impact of Latency & Throughput

As in the case of obstacle avoidance (§VII-C), we ask:
• What is the impact of latency or throughput degradation
of the OODA loop on benchmark score?

Figure 31(a) shows what happens when additional latency of
250 ms and 500 ms are added to the OODA loop. For all target
speeds and models, there is a noticeable drop in benchmark
score. The drop is worse at higher speeds. This is directly
attributable to the inability of the more sluggish OODA loop
to keep the target centered in the FOV. At higher speeds, the
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Fig. 31: Impact of Latency and Throughput on Tracking

drone often loses sight of the target early in the tracking.
This results in a zero score for the remaining frames of that
experiment, and hence an overall low average score.

Figure 31(b) shows the same trend when OODA loop
throughput is artificially throttled to 3 fps or 1 fps. At all
target speeds and for all models, there is a noticeable drop in
benchmark score. This drop is greater at higher speeds.

The results in Figures 31(a) and (b) confirm that both
end-to-end latency and bottleneck throughput are important
independent factors in determining tracking ability. Optimizing
one at the cost of the other, as occurs when using strategies
such as batching of operations, is unlikely to be beneficial.

XI. VALUE OF ON-BOARD DRONE INTELLIGENCE

Edge computing allows use of compute resources that are
far larger and heavier than could be carried by an ultralight
drone. In the context of AI, this translates to generality
and versatility. Purely through software development on the
cloudlet, it is easy to re-purpose the drone for new tasks that
were not anticipated earlier. For example, a cloudlet-based
zero-shot object detection transformer model [45] could be
made available for use in the OODA loop.

The drone marketplace, however, is moving in the opposite
direction. Drone vendors are constantly identifying specific
new functionality to add to drones. There is a well-understood
tradeoff between generality, energy-efficiency, development
cost, and weight/size that applies in this context. As Figure 32
from Chung et al [46] shows, an ASIC is by far the most

189



energy efficient alternative for a given functionality. It is also
likely to have the lowest weight. However, it takes much
longer to develop, is much more expensive to create than pure
software, and only provides fixed functionality.

To quantify the value of on-board intelligence, we re-ran
our obstacle avoidance benchmark using a DJI Mini 4 Pro
drone. This consumer photography drone weighs 249 g, and is
equipped with 6 stereo cameras and an onboard obstacle avoid-
ance system. It has two modes, Normal and Nifty. Normal
prioritizes safe flight while Nifty attempts to pass obstacles
as quickly as possible. The obstacle avoidance feature of this
drone is intended as a form of “pilot assist.” The RPIC flies the
drone without worrying about obstacles. The drone’s builtin
capability performs all the necessary sensing and actuation
needed to avoid collisions.

Figure 33 presents the scores obtained by the DJI Mini 4 Pro
on our obstacle avoidance benchmark. The baseline results for
our platform from Figure 16 are also shown for comparison.
For all values of w, the DJI Mini 4 Pro is at a clear advantage.
This the direct result of additional sensors and a much faster
OODA loop that avoids edge offload.

These results suggest that even when using edge offload,
there is very clear value in taking advantage of on-board capa-
bilities when they are available. The “pilot assist” approach to
obstacle avoidance implemented by the DJI Mini 4 Pro could
equally well be used by cloudlet-based software to control
the drone’s flight path. Only the macro components of that
flight path would incur the overhead of the OODA loop from
drone to cloudlet. The micro components of the flight path that
maneuver the drone around obstacles would only be subject
to its much tighter on-board OODA loop.

Complementing on-board fixed functionality with edge of-
fload provides extensibility and versatility. The DJI Mini 4 Pro,

Architecture Efficiency (GFLOP / J)
CPU (Core i7) 1.14
FPGA (Xilinx LX760) 3.62
GPU (NVIDIA GTX285) 6.78
GPU (AMD R5870) 9.87
ASIC 50.73

Source: Table 4 in Chung et al [46]

Fig. 32: Matrix Multiplication Kernel Implementations
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Fig. 33: On-Board Obstacle Avoidance

for example, is unable to do general-purpose object detection
even though it can detect people and vehicles. It cannot
detect our target, and is hence unable to execute our tracking
benchmark. Edge offload could remedy that limitation, thereby
increasing the versatility of the drone.

XII. CONCLUSION

We began this paper by asking whether the end-to-end
performance of edge offload using COTS ultralight drones,
commercial 4G LTE wireless networks, and COTS cloudlet
hardware, is sufficient for real-world active vision tasks. We
quantitatively analyzed such a COTS pipeline through the lens
of an OODA loop, developing parameterized and reproducible
benchmarks for avoidance and tracking tasks. Our results
confirm that a cloudlet-based system today is already very
close to being useful for real-world active vision tasks. No new
ecosystem of custom-built drones and low-latency wireless
networks is needed for commercialization. The most important
short-term targets for optimization are on-drone sensing and
encoding of video, as well as drone actuation. The benchmarks
we have presented on obstacle avoidance and object tracking,
together with our flight platform’s results on them, provide a
baseline against which future improvements in drone auton-
omy can be measured.
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