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Abstract: Two design experiments were conducted to investigate students’ use of 
mathematics in their engineering design strategies. The instruction utilized a 
model-eliciting activity in the context of controlling robot movements. Analyses 
of pre-post problem solving assessments from the first study support the 
hypothesis that instruction does facilitate improved understanding of how the 
robots move. These same gains are not evident in students who work with the 
same robots in preparation activities for robot competitions. Cases of student 
teams that developed more and less sophisticated design strategies suggested 
students’ epistemological orientation explains some of the observed differences. 
The second study then manipulated epistemological orientation and results 
support the hypothesis that a mechanistic orientation results in greater learning 
gains. 

Objectives 
The larger goal of this research is to understand how students can become more capable 
engineering designers by better understanding the physical systems within which they work. The 
objective of this current study was to investigate the role of mathematics in facilitating that 
understanding. 

Theoretical Framework 
Mathematical modeling is a key part of authentic engineering as practitioners must work with 
complex physical systems (Gainsburg, 2006). Beyond modeling, using mathematics can 
facilitate understanding of the physical system itself (Schwartz, Martin, & Pfaffman, 2005). 
Mathematical procedures learned without connections to the physical quantities and relations 
that they represent are unlikely to lead to conceptual understanding. Nevertheless, qualitative 
understanding alone is not sufficient for complex problems, so connecting qualitative 
understanding with mathematics is ideal (Lehrer & Schauble, 1998). 

For simpler and familiar problems, informal strategies are better tied to the situation and 
so are less error prone than abstract strategies (Koedinger, Alibali, & Nathan, 2008). Guess-and-
check is one example of a grounded, informal strategy (Nhouyvanisvong, 1999). Students who 
use guess-and-check can be systematic and purposeful (Johanning, 2004; Levin, 2008), using 
implicit knowledge about the situation’s functional relationships. Nevertheless, there are levels 
of guess-and-check (Stacey & MacGregor, 1999), but guess-and-check is not easily extended to 
complex cases. It is also unclear how students can transition from such strategies to models that 
are explicit about the relevant quantities and relations. Investigating contexts where students 
make such transitions could provide insight into students’ progressions in the use of mathematics 
as a tool for understanding. 

As a framework for this study, we adopted a resources view of knowledge (Hammer, 
Elby, Scherr, & Redish, 2005; Smith, diSessa, & Roschelle, 1993). We assumed students have a 
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complex system of context-sensitive knowledge elements, including many intuitive ideas about 
the physical world. These knowledge elements can be utilized as productive resources for 
building more refined and organized understanding. To that end, we seek to identify knowledge 
elements that students draw on when solving engineering problems using mathematics, and to 
highlight productive paths for refining and reorganizing those elements. Our research questions: 

1. When working in an engineering domain that readily involves guess-and-check, how can 
instruction facilitate students in using more explicit mathematical models? 

2. Does using more explicit mathematical models increase students’ understanding of how 
the robots work? 

3. How can the instructional environment better facilitate students’ use of mathematics to 
identify and build on their existing cognitive resources? 

Instructional Design 
Robotics is an interesting case of engineering design that is becoming increasingly popular with 
K-12 student competitions (e.g., FIRST – For Inspiration and Recognition of Science and 
Technology). But engineering in robot competitions may not lead to understanding how the 
robots work more generally. Teams may develop solutions fine-tuned for a particular challenge 
without finding a need to understand how the general system works. 

As an alternative, we developed the Robot Synchronized Dancing (RSD) instructional 
unit (Silk, Higashi, Shoop, & Schunn, 2010). The RSD unit facilitates students in programming 
multiple LEGO robots to dance in sync with each other. To investigate students’ use of 
mathematics, the unit was designed as a model-eliciting activity (MEA) in which students invent 
solutions in a series of express-test-revise cycles (Hamilton, Lesh, Lester, & Brilleslyper, 2008; 
Lesh, Hoover, Hole, Kelly, & Post, 2000). Students work in teams of 2-3 and create a “toolkit” 
for a robot dance team captain with a team of different-sized robots. The captain needs a 
synchronization solution for any dance routine. This helps focus the teams on designing a 
general, adaptable, and explainable solution. 

Teams are provided with an example dance routine and robots (Figure 1) that are 
carefully chosen to make visible key proportional relationships between the robots’ physical 
design, the program parameters, and the magnitude of the robots’ movements. Hence, 
proportional reasoning (Lamon, 2007) is a key mathematical model teams are facilitated in 
using. Teams are presented with the entire problem up front, but the activities are structured into 
sub-problems. We hypothesized that this unit would encourage mathematical modeling to a 
greater extent than competition activities, and that this in turn would lead to increases in 
students’ understanding of how the robots work. 

Study 1 
An exploratory design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) using the 
RSD unit was implemented to encourage students’ to use mathematics in their work with robots 
and to observe whether doing so led to improvements in their understanding. Identifying cases of 
more and less successful learning provided the basis for hypothesizing about what were key 
elements of the instructional design and more productive ways of connecting the mathematics to 
the robots.  

Methods 
Students from an urban middle school self-selected into one of two interventions during their 
elective period: preparation for a robot competition (the Competition group) or an MEA (the 
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Instruction group). Preparing for the competition requires more time, so the Competition group 
participated in 32 hours of robot activities, whereas the Instruction group participated in 8 hours. 

The first author taught the Instruction sections and the school’s engineering instructor 
taught the Competition section. Both groups worked with the same LEGO robots; moreover, a 
large part of the competition required getting their robot to move specific distances and angles, 
which was the primary focus of the Instruction group activities. 

To measure understanding of the way the robot works, an 18-item, paper-and-pencil 
assessment of robot problem solving was designed focusing on problems involving the control of 
robot movements, in which proportional relationships can be applied for more effective problem 
solving. The items were modified from validated proportional reasoning assessments (e.g., 
Jansen & van der Maas, 2002; Misailidou & Williams, 2003) and given a robotics cover story 
(Figure 2). Both groups were given identical pre- and post-assessments at the beginning and end 
of their activities. In addition, the Instruction group activities were video recorded and the work 
they produced was collected, including worksheets and posters describing their evolving RSD 
toolkits. 

Results 

Learning Gains 
Inspecting the assessment data, the students in the Instruction group made significant learning 
gains, t(20) = 3.94, p < 0.001, Cohen’s d = 0.55, whereas the students in the Competition group 
did not, t(7) = 0.58, p = 0.58, Cohen’s d = 0.12 (Table 1 and Figure 3). This supported the 
hypothesis that instruction encouraging the use of math in engineering strategies helps improve 
understanding of the system itself. 

Solutions Generated 
Despite overall gains, examining lower and higher quality solutions of teams within the 
Instruction group revealed meaningful differences in mathematics use. The following is a 
contrasting case of two teams—A2 and B1. Both solutions could be considered typical, but were 
chosen as representative of the solution range to present a useful contrast. Table 2 summarizes 
the differences, but we highlight key differences here. 

The teams approached the RSD task very differently. In the first cycle, both teams 
generate working strategies based on relative scaling (Figure 4). However, B1’s strategy is 
focused on a physical aspect of the robot responsible for the distance traveled (wheel size), 
incorporating a layer of abstraction not present in A2’s strategy. In a worksheet, B1 then 
articulates how working strategies necessarily incorporate a multiplicative comparison between 
robots (Lamon, 1993), but they express an additional criterion valuing solutions that are explicit 
about key physical aspects of the robots. 

When generating revised strategies, both teams engaged in unitizing (Lamon, 1993), 
based on how far the robot moves per motor rotation (Figure 5). However, B1 recognized this 
unit rate as the wheel circumference, but A2 did not make this connection explicit. Again, A2 
was content connecting motor rotations and distance directly without incorporating physical 
features of the robot. In their final toolkit (Figure 6), A2 reverted back to a guess-and-check 
strategy, whereas Team B1 attempted to extend their scaling idea to turn movements. 

Discussion 
Because Team B1 included a student with prior robot experience and an advanced mathematics 
background, it may be that access to advanced cognitive resources (e.g., ratios and proportions) 
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explains some of the differences between the teams. On the other hand, Team A2 was able to use 
relative thinking and unitizing in their intermediate solutions, suggesting that their understanding 
of the relevant mathematics was not a limiting factor. Instead, it seems likely that despite of 
having access to those mathematical resources, they felt other numerical strategies, including 
guess-and-check, were more appropriate. 

An alternative explanation is that a key distinction between the teams was less about 
cognitive resources and more about epistemological resources—views about the nature of 
knowledge that is appropriate for particular tasks (Louca, Elby, Hammer, & Kagey, 2004). A2 
was concerned primarily with getting the particular robots to be synchronized in a precise way as 
evidenced by their continual use of guess-and-check, and by their fine-tuning of values even 
after applying math-based strategies (Figure 5a). A2’s view is consistent with a calculational 
orientation (Thompson, Philipp, Thompson, & Boyd, 1994). Students with a calculational 
orientation have a tendency to focus almost exclusively on the language of numbers and 
numerical operations without connecting how an understanding of the situation gives rise to 
those calculations. In contrast, B1 held a view of the task as being about trying to represent their 
ideas of how the robot works. This view is reflected in their use of wheel size in their 
explanations, and their defense of this approach over using distance alone. We label B1 a 
mechanistic group (Russ, Coffey, Hammer, & Hutchison, 2008). Students with a mechanistic 
orientation focus on identifying causal mechanisms that underlie natural phenomena. We 
designed a follow-up study to test these epistemological distinctions further. 

Study 2 
A second design experiment was conducted to test the hypothesis that epistemological 
orientation impacts learning. Two instructional sections were manipulated to encourage one 
group to take on a mechanistic orientation and the other a calculational orientation. Again, we 
take a resources view that epistemologies are not individual and stable, but instead are context-
sensitive and malleable (Louca et al., 2004), and so can be activated using appropriate 
instructional moves. We expect students who adopt a mechanistic orientation will make greater 
gains in understanding relative to students who adopt a calculational orientation. 

Methods 
Students from an independent school who had just completed fifth, sixth, or seventh grade were 
recruited for the Instruction group. The Instruction group had two sections, each of which met 
five consecutive days, two and a half hours per day at a university research building. The 
sections were assigned randomly to conditions—one to the Mechanistic group and the other to 
the Calculational group. Students chose their section based on convenience. However, they were 
not informed of the differences between sections. The first author was the instructor for both 
Instruction sections. The typical RSD unit was implemented with both sections, except for three 
distinctions intended to activate the contrasting epistemological orientations (summarized in 
Table 3). 

Teams registered for a local robot competition were recruited to serve as the Competition 
group. Two middle school teams volunteered, both of which met during an elective period. They 
spent a similar time allocation as in Study 1. 

Based on Study 1 analyses, it was possible to use a shorter test while maintaining 
reliability. Twelve items with high internal consistency and diagnostic value were selected for a 
revised assessment. Students in all groups were given identical pre- and post-assessments. The 
activities of the Instruction groups were video recorded and their work was collected. 
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Results 
Inspecting the assessment data, students in the Mechanistic group made significant learning 
gains [t(9) = 3.34, p < 0.01, Cohen’s d = 0.88], whereas the students in the Calculational 
[t(7) = 0.1.67, p = 0.14, Cohen’s d = 0.51] and Competition [t(18) = 1.45, p = 0.16, 
Cohen’s d = 0.21] groups did not (Table 1 and Figure 7). This supported the hypothesis that a 
mechanistic orientation is particularly powerful in instruction focused on encouraging students to 
use math for understanding. It is notable that both Instruction groups had somewhat large effect 
sizes. 

General Discussion 
The implementations of the RSD unit in both studies helped students improve their 
understanding of the way the robots work. These improvements were the result of facilitating 
students’ use of mathematics for thinking about the robots in more explicit terms, a practice less 
likely to occur when preparing for robot competitions. Further research controlling for time on 
task, using a larger number of students and classrooms, and using random assignment to 
minimize individual differences would be necessary to confirm these results. 

In addition to providing instructional opportunities for students to use math in their 
engineering design, alternative ways to setup the activities influence how students approach the 
task. As other researchers have argued (Greeno, 2009) and investigated empirically (Elby, 2001; 
Hutchison & Hammer, 2009; May & Etkina, 2002; Redish & Hammer, 2009), epistemological 
framing is an important factor. The studies reported here add to that research base and provide 
evidence that framing may be manipulated in a classroom, leading to impacts on learning. 
Further, these studies provide clarification on how using mathematics for conceptual 
understanding may be more about using simple mathematics in complex ways rather than 
complex mathematics in simple ways (Iversen & Larson, 2006). This suggests it may not be 
necessary that students be provided with large amounts of mathematical prerequisites before 
being encouraged to use mathematics as a tool for understanding. 
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Appendix A – Tables 

Table 1: Pre- and post-assessment scores of robot problem solving. 

 Study 1 (18 items)   Study 2 (12 items)  

 Instruction Competition  Calculational 
(Instruction) 

Mechanistic 
(Instruction) 

Competition 

N 21 8  8 10 19 

Mean (SD)       

Pre 7.00 (4.02) 9.00 (4.57)  6.00 (2.00) 5.90 (3.25) 8.68 (2.71) 

Post 9.24 (4.15) 9.50 (3.59)  7.25 (2.82) 8.50 (2.59) 9.26 (2.79) 
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Table 2: Summarized differences between the contrasting teams from Study 1. 

Contrasting Teams  Team A2 – Calculational  Team B1 – Mechanistic 

Team Composition  Sixth grade male 
no robot experience 
grade-level math 

 
Seventh grade male 

no robot experience 
grade-level math 

 
Ninth grade female 

no robot experience 
grade-level math (Algebra 1) 

 Sixth grade male 
no robot experience 
grade-level math 

 
Seventh grade male 

no robot experience 
grade-level math 

 
Ninth grade female 

some robot experience (out-of-
school girls science program) 
advanced math (Algebra 1 in 
seventh grade) 

Initial Ideas for Synchronizing 
Distance 

 Used a guess-and-check strategy  Used ratio of wheel sizes 
(circumference) to scale down 
motor rotations 

  “Because if we picked anything 
littler than that we though [sic] 
Madonna would go to [sic] slow” 
[3 motor rotations] 

 “Bigger wheels go farther because 
one rotation is larger” 

First Synchronizing Distance 
Strategy 

 Adopts a scale factor strategy based 
on ratio of distances, but doesn’t 
incorporate any robot physical 
parameters, or references to the 
physical situation. 

 Formalizes their initial “Scale 
Wheel” strategy with wheel size 
as the basis 

Explaining a Teacher Case 
The case uses the ratio of distances 
w/ same motor rotations to scale 
motor rotations. 

 Recognizes this as a more formal 
version of their strategy, but 
without explanation or critique 

 “This does work but I would rather 
use the wheel size because 
distance doesn’t apply in turns 
and can be affected by outside 
factors.” 

Revised Synchronizing Distance 
Strategy 

 Develops a new strategy with the 
distance in one rotation as the 
basis, but without connecting that 
rate to the wheel size 

 Continues to use wheel size as the 
basis 

  Does adjustment (fine-tuning) 
beyond the initial calculation 

 Is less concerned with getting the 
values exactly correct 

Final Toolkit  Revert to a guess-and-check 
method without mention of 
physical robot parameters 

 Able to extend scale factor 
reasoning to turns, although 
doesn’t incorporate the additional 
relevant physical robot 
parameters (robot width) 
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Table 3: Instructional differences between groups in Study 2. 

Instructional Manipulation  Calculational  Mechanistic 

Design Task Setup 
How each task is introduced to the 
student teams. 

 Focused on input-output 
transformations 

 
“Think of how to transform the 

motor rotations value into the 
desired robot distance. Create a 
strategy for your toolkit that is 
clear about each of those steps.” 

 Focused on representing intuitions 
 
“Think of how motor rotations 

causes the robot to move forward 
a specific distance. Create a 
strategy for your toolkit that 
captures your ideas about how 
that works.” 

     

Teacher-Provided Cases 
Example strategies given to 
students after they have invented 
their own strategies. 

 Focused on identifying empirical 
patterns 

 
 
e.g., Scale factor strategy based on 

the ratio of the distances when 
using the same motor rotations.” 

 Focused on identifying 
intermediate physical quantities 

 
e.g., Scale factor strategy based on 

the ratio of the wheel sizes. 

     

Instructional Support 
Questions instructors use to assess 
and advance students when they 
are inventing their own strategies. 

 Focused on correctness of 
calculations 

 
 
“What are the steps you took to get 

this value?” 

 Focused on connecting quantities 
and operations to the physical 
situation 

 
“What does this value/operation 

correspond to on the robot?” 
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Appendix B – Figures 

(a)  (b)  

Figure 1: (a) the contrasting robot designs used in the RSD unit and (b) a representation of their 
lack of synchronization on the first move of the example dance routine. 

 
Figure 2: An example item from the robot problem solving assessment. 

 
Figure 3: Mean scores (+SE) on pre- and post-assessments of robot problem solving for Study 1. 
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(n=21) (n=8)

A robot completes a move with 12 motor rotations and moves forward 14 centimeters. You modify 
the program to be 30 motor rotations. How far will it move forward now? 

Answer: ____________________ 

How did you find your answer? Please show your work and explain in the space below. 
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 (a)  (b)  

Figure 4: Posters of first strategies for synchronizing distance generated by the contrasting teams, 
(a) Team A2 and (b) Team B1. 

(a)  (b)  

Figure 5: Posters of revised strategies for synchronizing distance generated by the contrasting 
teams, (a) Team A2 and (b) Team B1. 
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(a)  (b)  

Figure 6: Posters of final toolkits for synchronizing robots generated by the contrasting teams, 
(a) Team A2 and (b) Team B1. 

 
Figure 7: Mean scores (+SE) on pre- and post-assessments of robot problem solving for Study 2. 
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