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Computer science proficiency continues to grow in importance, while
the number of students entering computer science-related fields declines.
Many rich programming environments have been created to motivate
student interest and expertise in computer science. In the current study,
we investigated whether a recently created environment, Robot Virtual
Worlds (RVWs), can be used to teach computer science principles within
a robotics context by examining its use in high-school classrooms. We
also investigated whether the lack of physicality in these environments
impacts student learning by comparing classrooms that used either
virtual or physical robots for the RVW curriculum. Results suggest that
the RVW environment leads to significant gains in computer science
knowledge, that virtual robots lead to faster learning, and that physical
robots may have some influence on algorithmic thinking. We discuss the
implications of physicality in these programming environments for
learning computer science.

Keywords: algorithmic thinking; computer programming; physicality;
programming environments; robotics; virtual simulations

Introduction

Computer science is a key field for advancement and innovation in science,
technology, engineering, and mathematics fields, and knowledge of
computer science and programming is increasingly important for literacy in
today’s society. However, as computer science grows in importance, a
declining number of students are entering computer science-related fields
(Dann, Cooper, & Pausch, 2006; Vesgo, 2005), Furthermore, among
computer science students, average levels of performance are much lower
than expected. For example, when McCracken and colleagues (2001)
examined the performance of first-year computer science students after
students had completed their introductory courses, they found that students
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achieved an average score of 20.8% on the study’s assessment. In another
investigation of novice programmers’ code reading skills, Lister and
colleagues (2004) found similarly low performance. The authors concluded
that many computer science students do not possess the fundamental
knowledge required for problem solving in programming.

Rich programming environments

The need to motivate and improve student involvement and learning in
computer science has led to the creation of many rich programming environ-
ments. These visual environments, generally targeted at younger audiences,
are intended to be highly interactive and to immerse students while teaching
programming and other skills, such as analytic thinking and creativity. Many
programming environments currently exist, including numerous implementa-
tions of the Logo programming language (Papert, 1980), Scratch (Resnick
et al., 2009), and Alice (Dann et al., 2006). A number of studies show that
these programming environments can be used to successfully teach and
improve students’ programming and computer science abilities (e.g. Bishop-
Clark, Courte, & Howard, 2006; Clements, 1990; Meerbaum-Salant, Armoni,
& Ben-Ari, 2010; Sutherland, 1993; Sykes, 2007).

Recently, Carnegie Mellon University and Robomatter Inc. have devel-
oped a new programming environment situated in the context of robotics,
named Robot Virtual Worlds (RVWs). The RVW environment allows
students to program virtual robots (including LEGO, VEX, TETRIX and
fantasy robots) using ROBOTC, a C-based robot programming language.
Students can then use their robots in simulated three-dimensional worlds,
which consist of themed worlds (e.g. a tropical island, an underwater world,
a different planet) and table-top boards; one themed and one table-top world
are shown in Figure 1. These worlds include built-in tasks of varying
difficultly that students can complete. Users are also able to download
additional tools that work with the RVW environment, such as a level
designer for students to create their own stages, object importers for students
to build and import their own three-dimensional objects into their RVW
levels, and a measurement tool kit to aid path planning and navigation. The
RVW environment is comparable with a physical robotics environment in
many ways. RVW runs off of Unity, which includes a built-in physics
engine that can simulate a physical robot’s wheel slippage and effector error.
Although RVW does not include artificial sensor noise, it can still simulate
the range of sensor values that students would normally encounter with a
physical robot (e.g. a value of −1 when the sensor is out of range), creating
scenarios that require advanced thinking from the programmer.

The RVW environment is also complemented by an online curriculum
that leads students through robotics programming. The course is made up of
nine units. Each unit consists of video lectures, paper-based activities, online
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practice quizzes and table-top challenges that can be completed using either
the RVW simulations or with physical materials. Unit topics include: how to
use the RVW software, how the physical robot functions, robot programming
basics (e.g. how to program the robot to move forward at different speeds),
and more advanced programming concepts (e.g. using functions and sensors).
Because robotics has been shown to be an effective tool for teaching
introductory computer science concepts (see Major, Kyriacou, & Brereton,
2011 for a review), we are interested in whether this new environment can
improve students’ computer science and robotics programming knowledge.

Affordances of virtual environments

Virtually simulated environments, such as the RVW environment, may
provide several unique learning affordances that physical environments

Figure 1. Two of the three-dimensional worlds in which students can program their robots
in the RVW environment.

Computer Science Education 3
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cannot. For example, virtual environments allow students to quickly see
their program in action. Students can also pause their program simulations
as soon as they encounter an error, allowing them to remedy the error
without delay. Meanwhile, in a physical environment, students may not be
able to stop their programs as quickly or as easily, leading to more delayed
feedback and delayed error correction. Teaching robotics programming in
classrooms is a particular challenge, as physical robotics materials can be
difficult to obtain due to cost and the amount of space required to store
them. Physical robots also require additional time to build and set up before
they can be used (Major et al., 2011), and students are generally unable to
access these robots outside of class time, further limiting the amount of time
students are able to spend learning with the robot. Thus, virtual robotics
simulations may be especially beneficial for their accessibility and
convenience.

However, physical environments have also been shown to have unique
learning affordances. For instance, physical environments provide a percep-
tual space to ground abstract concepts, and they provide experience with
errors caused by physical artefacts (see Olympiou & Zacharia, 2012). In the
robotics context, the physical environment may allow students to more
clearly see the connection between their program code and the actions of
the robot itself. A physical robot may also provide more motivation for
students whose interests lie in robotics, as working with a virtual simulation
may feel less authentic than working with an actual robot. Using the RVW
environment’s ability to utilize the same ROBOTC code for both virtual and
physical robots, we investigated whether physicality (or lack thereof) in
these rich virtual environments has any influence on learning computer
science concepts.

Research objectives

The current paper asks two questions: whether the RVW environment can
be used to improve students’ knowledge of computer science concepts; and
whether physicality plays a role in students’ learning through the RVW
environment. In order to answer these questions, we conducted two studies.
In Study 1, we investigated the use of the RVW environment and online
curriculum for teaching computer science and robotics programming in
several high-school classrooms. In Study 2, we investigated whether
students who use virtual robots vs. physical robots to complete the online
curriculum differed in their learning.

4 A.S. Liu et al.
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Study 1

In Study 1, we attempted to verify that the RVW environment and
complementary online curriculum could allow students to learn robotics
programming and computer science principles.

Methods

Participants

Three public high school classes completed the RVW online curriculum
using VEX robots. The three courses were elective robotics courses from
three different schools. The courses, hereby designated as “Class V + P,”
“Class V1” and “Class V2” consisted of 10, 23 and 13 students, respectively,
for a total of 46 students. The majority of students were in their freshman or
sophomore year, with little to no prior programming experience. Class V + P
completed the curriculum’s exercises through the RVW software and then
repeated the exercises using a physical VEX robot. Classes V1 and V2 used
only the virtual VEX robot simulation to complete the curriculum.

Data collection

Students completed a 50-question, multiple-choice pretest at the start of the
course, and an identical post-test after completing the course (sample ques-
tions can be found in the Appendix). The test included four sub-categories
of questions:

� General programming questions: Questions that involved syntax or
concepts that are applicable to multiple programming languages.
Example: “If the condition of an If statement is true, then all of the
code inside of its curly braces will run. True/False.”

� ROBOTC syntax questions: Questions that involved ROBOTC syntax
or the ROBOTC application (e.g. using menus in the ROBOTC
application). Example: “To make the robot stop, you set its motor
values equal to __.”

� Physical robot functioning questions: Questions that involved the
physical VEX robot’s functioning. Example: “The VEX Ultrasonic
Rangefinder (sonar sensor) measures distance using __.”

� Algorithmic thinking questions: Questions that involved thinking
through the process of the programming problem (e.g. planning the
program, using pseudocode, predicting the behaviour of a program) or
more abstract concepts of programming. Example: “Given the program
above, the robot will do ___.”

The number of problems in each sub-category and the Cronbach’s alpha
(α, a commonly used metric of instrument reliability; Cronbach, 1951) for
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each category are shown in Table 1. The sub-categories were not mutually
exclusive; 23 of the 50 questions fell into two sub-categories. As a general
rule of thumb, a minimum alpha coefficient of .7 or .8 is recommended (e.g.
Nunnally, 1978). Note that the coefficients for algorithmic thinking and
general programming fall below this suggested threshold. These low alpha
coefficients could be indicative of an insufficient number of test items to test
the latent construct, low interrelatedness between test items, or heterogeneous
constructs underlying the test items, and must be considered as a potential
limitation regarding the algorithmic thinking and general programming
sub-categories.

Data analyses

Analyses were done separately for each class to examine consistency of
results across contexts, and to control for class-level effects that would bias
an overall learning gain analysis. For each class, we conducted a
paired-samples t-test that compared students’ pretest scores to their post-test
scores, to see whether students significantly improved in their programming
knowledge after completing the RVW course. We also conducted a separate
t-test for each of the four sub-categories of questions, to examine whether
learning differed across them. Due to the uneven number of problems in
each category, we used the proportion of correct answers within each
category as a measure of accuracy.

Results

Overall performance changes

Our first analysis investigated whether students improved in their computer
science knowledge, using pretest and post-test as measures of performance.
All three classes showed significant improvement from pretest to post-test
[Class V + P: t(9) = −9.5, p < .001; Class V1: t(22) = −14.4, p < .001;
Class V2: t(12) = −7.1, p < .001]. Figure 2 shows that the overall learning
gain did not differ by pretest score, as almost all participants improved
regardless of their pretest score. Mean gains were substantial: out of 100
possible points, Class V + P improved by an average of 24.8 points, Class

Table 1. Number of items and Cronbach’s alpha for question sub-categories.

Problem sub-category Number of items α

Algorithmic thinking 4 .54
General programming 13 .56
ROBOTC syntax 37 .84
Physical robot functioning 19 .81

6 A.S. Liu et al.
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V1 improved by an average of 25.0 points, and Class V2 improved by an
average of 19.1 points (see Table 2 for average pretest and post-test scores).

Changes within question sub-categories

To obtain a more nuanced look at students’ improvements in different
aspects of computer science and programming knowledge, we looked at
students’ pretest and post-test scores within each question sub-category
(general programming, ROBOTC syntax, physical robot functioning and
algorithmic thinking).

Students in all three classes showed significant improvements in general
programming, ROBOTC syntax and physical robot functioning, from
pre-scores of .75 or lower to post-scores of .85 or higher (see Table 2 for
average pretest and post-test scores for each sub-category, and p-values).
Only students in Class V + P showed a significant increase in algorithmic
thinking [t(9) = −2.3, p = .045); in contrast, students from Class V1 only
marginally significantly improved [t(22) = −2.0, p = .056], and students
from Class V2 did not improve [t(12) = −.56, p = .584] (see Figure 3).

Figure 2. A comparison of Study 1 participants’ total pretest scores plotted against their
total post-test scores.

Table 2. Study 1 mean proportion correct (and standard deviations) for full test and question
sub-categories, by class.

Class Total
General

programming
ROBOTC
syntax

Physical
robot

Algorithmic
thinking

V + P Pre .62 (.15) .65 (.24) .60 (.16) .61 (.19) .80 (.20)
Post .87 (.10)*** .97 (.15)*** .87 (.10)*** .91 (.14)*** .98 (.08)*

V1 Pre .65 (.11) .65 (.11) .63 (.11) .69 (.14) .89 (.15)
Post .90 (.07)*** .97 (.10)*** .89 (.07)*** .98 (.10)*** .96 (.12)

V2 Pre .68 (.12) .74 (.16) .66 (.14) .70 (.15) .81 (.29)
Post .87 (.08)*** .93 (.12)*** .86 (.10)*** .95 (.07)*** .85 (.13)

Notes: Denotes significant increases from pre-test to post-test.
*p < .05, **p < .01, ***p < .001.

Computer Science Education 7
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Discussion

Study 1 suggests that the RVW environment can be used to teach computer
science and programming concepts. Students significantly improved their
test performance after completing the online RVW curriculum. Thus, as with
other rich programming environments, the RVW environment and its online
curriculum are valid tools for teaching computer science concepts through
robotics.

A closer examination of the question sub-categories showed that
students were likely to improve in the topics of general programming,
ROBOTC syntax and physical robot functioning. There were inconsistent
gains in algorithmic thinking: only students in Class V + P significantly
improved.

Interestingly, the two classes that showed no algorithmic thinking gains
used only the virtual VEX robot provided by the RVW environment, while
Class V + P used a combination of virtual and physical VEX robots. This
result brings up the question as to whether the inclusion of the physical
robot uniquely contributed to learning in algorithmic thinking, above and
beyond the learning provided by the virtual VEX robot. As stated earlier,
the physical robot may encourage a stronger association between students’
ROBOTC code and the actions of their VEX robot. This association may
allow them to better visualize and plan their programs, leading to greater
algorithmic thinking gains as seen here. In Study 2, we further investi-
gated the possible benefit provided by the physical VEX robot.

Study 2

In Study 2, we investigated the possibility that the physical VEX robot
provides unique contributions to learning, specifically in algorithmic thinking.
We contrasted two classes that completed the online RVW curriculum using
only virtual VEX robots or only physical VEX robots.

Figure 3. From Study 1, the average algorithmic thinking score on the pretest and post-test
for Classes V + P, V1 and V2.

8 A.S. Liu et al.
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Methods

Participants

Public high school students from two elective programming classes
participated in the study, with the same instructor teaching both classes. One
class of 15 students completed the course using virtual VEX robots and the
virtually simulated table-top environments (the “Virtual” class). A second
class of 11 students completed the RVW course using physical VEX robots
and physical table-top boards that were visually matched with the virtual
simulations (the “Physical” class). Both classes consisted primarily of
freshmen and sophomores with little or no prior programming experience.

Data collection and analyses

Both classes completed the 50-item pretest and post-test used in Study 1,
and both classes completed the pretest within one or two days of the same
date. Students’ total scores on the pretest were compared with their total
scores on the post-test. To control for students’ differing pretest scores, an
analysis of covariance (ANCOVA) was run using condition (Virtual, Physi-
cal) as the independent variable, post-test score as the dependent variable,
and pre-test score as the covariate. We also examined whether learning
differed across the test’s four question sub-categories (algorithmic thinking,
general programming, ROBOTC syntax, physical robot) by performing a
separate ANCOVA for each question sub-category.

In addition, we looked at the number of days between students’ pretest
attempt and post-test attempt. This was used as a measure of the time needed
to complete the course, to see whether one condition required less time than
the other to learn the same amount of information. A one-way analysis of
variance (ANOVA) was performed, using condition (Virtual, Physical) as the
independent variable and number of days as the dependent variable.

Results

Overall performance changes

The Virtual and Physical classes showed no differences in their overall post-
test scores [F(1, 23) = .19, p = .67] when pretest scores were controlled.

Table 3. Study 2 mean proportion correct (and standard deviations) for full test and question
sub-categories, by class.

Class Total score
General

programming
ROBOTC
syntax

Physical
robot

Algorithmic
thinking

Virtual Pre .56 (.12) .59 (.12) .51 (.11) .51 (.14) .80 (.29)
Post .85 (.15) .86 (.15) .83 (.16) .86 (.17) .95 (.14)

Physical Pre .50 (.11) .54 (.12) .49 (.10) .42 (.12) .67 (.27)
Post .82 (.11) .79 (.11) .81 (.11) .82 (.16) .88 (.20)

Computer Science Education 9
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Both classes began with similar pretest scores and ended with similar
post-test scores. The average pretest and post-test scores for both classes, as
well as their sub-category scores, can be found in Table 3.

Changes within question sub-categories

Unexpectedly, the Virtual and Physical classes did not show any learning dif-
ferences across the four sub-categories of general programming [F(1, 23) =
1.3, p = .27], ROBOTC syntax [F(1, 23) = .079, p = .78], physical robots [F
(1, 23) = .11, p = .74], or algorithmic thinking [F(1, 23) = .061, p = .81] when
pretest scores were controlled. Follow-up paired-sample t-tests showed that
the classes significantly improved in all four sub-categories after completing
the online course (general programming: t(25) = −7.6, p < .001; ROBOTC
syntax: t(25) = −11.8, p < .001; physical robot functioning: t(25) = −11.9,
p < .001; algorithmic thinking: t(25) = −4.4, p < .001].

Time taken to complete the course

The Physical class took significantly more time than the Virtual class [F(1, 24)
= 30.3, p < .001] to complete the RVW online curriculum. All students in the
Physical class completed the course in the same amount of time: working with
the Physical robots did not afford them the same freedom that students in the
Virtual class had, who worked independently through the course with teacher
support. Due to heterogeneity of variance, we ran an additional t-test with
equal variances not assumed, which was significant [t(24) = 6.5, p < .001,
d = 2.2]. The Physical class took an extra 30.3 days on average (approxi-
mately one month) to complete the online course than the Virtual class (see
Figure 4).

To confirm that the time savings seen in the Virtual class were consistent,
we also looked at two additional classes who completed the same

Figure 4. From Study 2, the number of days taken by the Physical class and the Virtual
class to complete the RVW online curriculum.

10 A.S. Liu et al.
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programming course with virtual VEX robots (Classes V1 and V2 from
Study 1). Figure 5 shows a comparison of the three courses’ pretest scores,
post-test scores, and the number of days to complete the course.

To compare the time taken by each virtual class to complete the course,
we ran a one-way ANOVA, using class (Class “Virtual” being the Virtual
class in Study 2) as the independent variable, and number of days as the
dependent variable. On average, Class Virtual took 54.7 days to complete
the course (SD = 18.2), Class V1 took 49.8 days to complete the course
(SD = 12.3), and Class V2 took 20.5 days to complete the course (SD = 1.7).
The ANOVA was significant [F(2, 48) = 31.6, p < .001], and a post hoc
contrast revealed that Class V2 took significantly less time than the other
two classes to complete the online course. Due to heterogeneity of variance
between Class V2 and the other two classes, we ran a second independent
t-test comparing the amount of time taken by Classes Virtual and V1
(combined) and Class V2, which was significant [t(49) = 13.2, p < .001].
This suggests that all three Virtual classes allowed students to complete the
course in significantly less time than the Physical class in Study 2.

Discussion

Both the Virtual class and the Physical class displayed equal learning gains,
as their overall post-test scores were statistically equivalent (controlling for
pretest scores). Unlike Study 1, there were no differences in algorithmic
thinking gains between the Virtual and Physical classes, and both classes
showed equal learning gains across the four sub-categories of questions.
Possible reasons for the inconsistency between Study 1 and Study 2 are
explored in the General Discussion.

Figure 5. The total pretest scores, total post-test scores and number of days taken to com-
plete the online RVW course for Study 2’s Virtual class (Virtual) and the two Virtual-only
classes from Study 1 (V1 and V2).

Computer Science Education 11
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The Virtual class showed a time reduction benefit, completing the course
approximately one month earlier than the Physical class, with no effect on
overall learning. This suggests that working with the virtual VEX robots
allowed students to learn and complete the course more efficiently in the
RVW environment when compared to the physical VEX robots.

The course instructor’s informal observations support the efficiency of
the virtual robots. He noted that students in the Physical class encountered
additional communication, electrical, and mechanical issues with the
physical robots, requiring the instructor to devote his time to troubleshooting
problems. Part of the class’s time was also taken up by setup and clean up,
further impeding the time spent on programming. Because the virtual robots
did not have the same physical limitations, the instructor and his students
could focus their attention solely on programming. Students were also able
to work from home to spend additional time learning outside of class.

General discussion

The current studies investigated two primary questions: whether the RVW
environment and its online curriculum could be used to effectively teach
computer science and robotics programming principles, and whether the lack
of physicality in the RVW environment affected student learning. Study 1
provides evidence that the use of the RVW environment and its curriculum
can lead to substantial learning gains, especially in general programming
concepts, ROBOTC’s syntax and the workings of the VEX robot. This is
consistent with studies on other rich programming environments that show
that these environments can effectively be used to learn computer science.

Meanwhile, the answer to the physicality question is less clear. In Study 1,
the class that used a combination of virtual and physical VEX robots showed
significant improvements in algorithmic thinking, while the classes who used
only virtual VEX robots showed marginal gains at best. One possibility is that
the physical VEX robot provided students with a stronger association between
their programming codes and their robot’s behaviours. This association could
benefit algorithmic thinking, in that students are more able to understand how
the specifics of their programs cause the robot to act; this knowledge may
allow them to think through and plan their programs with more accuracy. On
the other hand, a virtual simulation allows students to receive quick feedback
and to immediately fix their errors and restart their program simulations.
Other literature in the programming and computer science education field has
emphasized the importance of short code execute debug cycles, which aid the
learning process and may also prove less frustrating for students (e.g. Barnes,
2002; Dodds, Greenwald, Howard, Tejada, & Weinberg, 2006; Fagin &
Merkle, 2002). Still, studies in other fields suggest that immediate feedback
can actually be detrimental (e.g. Kulhavy & Anderson, 1972; Surber &
Anderson, 1975). In this context, the quicker feedback and ability to

12 A.S. Liu et al.
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immediate restart one’s program may encourage students to engage in trial
and error rather than thinking fully through their program and its behaviours.

However, the comparison in Study 2 between the Virtual class and the
Physical class showed no differences in algorithmic thinking. Instead, the
Virtual class showed a large time benefit, in that the Virtual class was able
to learn the same amount of material in a month’s less time. The virtual
robot was not burdened with the same limitations that the physical robot
had, such as mechanical and electrical problems, allowing students to focus
their full attention on the RVW programming course. Thus, it appears that
the physicality of the VEX robot did not provide any affordances to the
learning process, and instead produced issues that distracted from the robot
programming course.

Alternatively, it is possible that a more robust difference in algorithmic
thinking would be seen when using a combination of virtual and physical
robots, as opposed to exclusively virtual robots or exclusively physical robots.
Indeed, in several other fields, a combination of virtual and physical manipu-
latives have been shown to lead to learning improvements above those
acquired when using only virtual or physical manipulatives alone (e.g. Jaakk-
ola & Nurmi, 2008; Martínez-Jiménez, Pones-Pedrajas, Climent-Bellido, &
Polo, 2003; Olympiou & Zacharia, 2012; Zacharia, 2007; Zollman, Rebello,
& Hogg, 2002). In relation to algorithmic thinking, the virtual environment’s
affordance of quick feedback and error correction could lead to faster learning
of basic programming concepts (which is supported by Study 2’s results).
Subsequent activities that involve the physical robot could then emphasize
the connection between the programming and the robot’s behaviour, which
could ultimately support greater improvements in more abstract algorithmic
thinking. This alternative explanation can be elucidated with future studies
that contrast classes using a combination of physical and virtual robots vs.
classes that use exclusively one type of robot.

Still, there exists the possibility that the different algorithmic thinking
gains seen in Study 1 were caused by class-level differences, rather than the
use of virtual or physical VEX robots. That is, differences in the way that
Class V + P was taught, in comparison to Classes V1 and V2 from Study 1
(e.g. more emphasis on algorithmic thinking outside of the curriculum), may
have led to the significant gains seen in Class V + P. Furthermore, the
repetition of exercises in Class V + P (first with a virtual robot, then with a
physical robot) may have reinforced the algorithmic thinking concepts
learned by students (though the other sub-categories did not show evidence
of reinforcement). Another possibility is that the pretest and post-test did not
provide an accurate measure of algorithmic thinking ability, as the tests
included only four algorithmic thinking-related questions that had a medio-
cre instrument reliability (as evidenced by a Cronbach’s alpha of .54).
Future studies should address this risk by using an assessment that includes
more algorithmic thinking-related questions with a higher consistency, to
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ensure that the test is accurately measuring the construct of algorithmic
thinking.

The current studies focused primarily on learning and time affordances
provided by virtual and physical learning environments, but there are other
potential affordances that remain to be explored. For example, working with
physical robots may feel more authentic for students interested in robotics,
which could lead to motivational differences within the two types of
environments. In this case, graphically complex, three-dimensional
environments such as the RVW platform may prove especially valuable:
students may feel equally motivated by the immersive world, fantasy
elements and game-like challenges in the simulator, even though they are
not working with a physical robot. The use of motivation measures and
qualitative observations of student and teacher experiences in future studies
would help in studying motivational affordances within virtual and physical
environments.

In conclusion, the RVW environment is another example of a rich
context that can be used to teach computer science concepts, embedded in
the context of robotics. While the current studies did not provide a clear
answer as to whether the lack of physicality in the virtual environment
affects learning, it is beneficial to consider the unique learning affordances
provided by virtual environments and physical environments. Virtual
environments provide great advantages in terms of accessibility and conve-
nience for classrooms that may otherwise be unable to participate in robotics
programming, due to financial and time costs and physical space limitations.
By further investigating the unique affordances provided by physical
environments, it may be possible to integrate their unique learning
affordances into virtual environments, such that computer science and
programming environments can continue to increase in accessibility with no
learning affordances lost.
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Appendix

General programming

� Special types of variables that allow you to pass data into a function are called
(senders/parameters/passers/variables).

� Just like task main, functions must have a set of parentheses () and a set of (semi-
colons/curly braces/AND operators/brackets).

� If the condition of an If statement is true, then all of the code inside of its curly
braces will run. True/False.

� A decimal number can be stored in which type of variable? (int/char/string/float).
� With functions, you write the code once, give it a name and then reuse it as many

times as you’d like within a program. True/False.

ROBOTC syntax

� The code “wait1Msec(5000)” tells the robot to wait for (5 s/50 s/one second/half
a second).

� Which character is used to signify the end of a command in ROBOTC? (comma/
period/semicolon/colon).

� Before using the encoders in a line-tracking program, their sensor values should
be set to (−1/4095/0/100).

� Which of the following cannot be used when naming a motor or sensor? (special
characters/spaces/ROBOTC reserved words/all of the above).

� To make a robot stop, you set its motor values (equal to 0/opposite one another/
equal to 63/equal to −1).

Physical robot functioning

� Ignoring drift, when using encoders to control how far a robot travels, slowing
the robot down will make it move (a greater distance/the same distance/a shorter
distance/an unknown distance).

� What can cause one motor to run faster than another on a robot? (construction of
the robot/variances between the motors/friction/all of the above).

� On the VEX Cortex, the shaft encoders record how many counts or degrees per
revolution? (360/100/180/1000).

� The VEX Line Tracking sensor works by measuring (reflected light/torque/sound/
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RPMs).
� A properly configured robot that has one motor turned on and the other turned

off will perform a (opposite turn/point turn/tank turn/swing turn).

Algorithmic thinking

� The hybrid language halfway between English and the programming language is
called (halfcode/hybridcode/prenglish/pseudocode).

� Simple behaviours are made up of complex behaviours. True/False.
� When comparing the role of the robot vs. the role of the programmer, the pro-

grammer’s role is to (ignore/enforce/create/carry out) the plan.
� Given the program above, the robot will do ___.
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