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R
obotic systems are ev-
erywhere—we just don’t 
call them robots. We call 
them cell phones, bank 
machines, cars, micro-

waves, the internet. Robotic tech-
nologies are ubiquitous and are mak-
ing it easier for people to drive cars, 
access money, find restaurants via 
their cell phone, or cook their food 
using a microwave. Robotic systems 
are possible because of computer 
science and sensing. 

Schools everywhere are using 
robotics education to engage kids 
in applied science, technology, en-
gineering, and mathematics (StEM) 
activities, but teaching programming 
can be challenging due to lack of 
resources. this article reports 
on using Robot Virtual 
Worlds (RVW) and cur-
riculum available on the 
internet to teach robot 
programming. 

it also reports the results 
of a research study that com-
pared the test scores of stu-
dents learning to program LEGo 
and VEX robots using virtual 
robots versus physical robots. the 
study was conducted by carnegie 
Mellon University’s Robotics Acade-
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my and the University of Pittsburgh’s 
Learning Research and Development 
center, and the results proved to be 
positive from both a teaching and 
learning perspective. this study 
builds on numerous 
studies involving 
teaching novice 
programming using 
robots (Roberts et 
al., 2011). 

The Brains of 
the System

the brains of 
robotic systems are 
driven by computer 
science (cS) and 

the computational thinking that cS 
education produces. cS will play a 
key role in nearly all future innova-
tion, including advancements across 
all StEM fields, but the United States 
has entered a significant national 
decline in the number of college 
graduates with basic and advanced 
cS-StEM degrees. this downward 
trend is particularly pronounced in 
cS (cRA, 2008). 

Reports indicate that the U.S. 
increasingly does not meet its own 
demand for cS professionals, and as 
a consequence has to rely on foreign-
born talent (National Science board, 

2010; ScienceDaily, 2007). Since many 
secondary schools in the U.S. offer 
few if any computer science courses 
(Gal-Ezer & Stephenson, 2009; Ro-
belen, 2010), this trend will likely 
continue. For example, a 2009 survey 
showed a drop in the percentage 
of secondary schools providing cS 
courses from 78% in 2005 to 65% in 
2009 (cStA, 2009). 

in part, the focus on high stakes 
testing topics coupled with increased 
emphasis on Advance Placement 
courses has squeezed out course-
work in many areas, including 
computer science. in addition, the 
sophistication of systems that stu-
dents use on a regular basis is so far 
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beyond the level of sophistication 
offered in many computer science 
classes that the motivation to learn 
programming has been reduced. 
Early programming environments 
more similar in sophistication to cur-
rent gaming platforms could be both 
transformational for motivation, and 
well-aligned with state and national 
learning frameworks. Students would 
want to play these games and formal 
and informal education systems 
would want to offer them. 

Robotics is an activity that ex-
cites students to consider cS-StEM 
careers (Ante, 2007), but schools 
typically don’t have enough robots 
so that each student can have their 
own robot to work with to learn pro-
gramming and it is difficult to assign 
robotics-related homework. over the 
last two years the Robotics Acad-
emy, with support from Robomatter 
inc., has developed a combination 
of game-like Robot 
Virtual Worlds 
(RVW) (www.robot 
virtualworlds.com) 
and simulations of 
traditional class-
room programming 
activities that 
allow students to 
use the same code 
on a physical robot 
that they use in the 
RVW environment. 

The Study: Physical  
vs. Virtual Programming

Public high school students from 
two elective programming classes 
participated in the study, and the 
same teacher taught both classes. 

one class completed a Robotc pro-
gramming course using physical VEX 
robots (the Physical class), while the 
other class completed a Robotc 
programming course using virtual 
VEX robots (the Vir-
tual class). thirteen 
students were in the 
Physical class, and 
17 were in the Virtual 
class. both classes 
consisted primarily of 
freshmen and sopho-
mores with little or 
no prior program-
ming experience.

both classes 
completed the same 
pre-test and post-test online. the 
pre-test and post-test contained the 
same 50 items, and both classes com-
pleted the pre-test around the same 
date. Eleven students in the Physical 
class and 15 students in the Virtual 

class completed both the pre-test 
and post-test, and were included in 
the analyses. Analyses investigated 
whether there were learning differ-
ences between students who inter-
acted with physical robots versus 
students who interacted with virtual 
robots.

Analyses
three analyses were performed 

on the data. First, students’ total 
scores on the pre-test were com-
pared with their total scores on the 
post-test. to control for students’ 
differing pre-test scores, an ANcoVA 
(analysis of covariance) was run us-
ing condition (Physical or Virtual) as 
the independent variable, post-test 
score as the dependent variable, and 
pre-test score as the covariate.

Second, we examined whether 
learning differed across topic sub-
categories. Four sub-categories were 
defined, into which all problems on 
the pre-test and post-test could be 
placed:

• Algorithmic thinking: Problems 
that involved thinking through the 

process of the programming problem 
(e.g., planning the program, using 
pseudocode, predicting what a pro-
gram would do) or more abstract 
concepts of programming. Example: 
“Given the program above, the robot 
will do _____.”

• General programming: Problems 
that involved syntax or concepts that 
are applicable to multiple program-
ming languages. Example: “if the 
condition of an if statement is true, 
then all of the code inside of its curly 
braces will run: true/False.”

• ROBOTC syntax: Problems that 
involved Robotc syntax or the 
Robotc program (e.g., how to use 
menus in the Robotc application). 
Example: “to make the robot stop, you 
set its motor values equal to _____.”

• Physical robot: Problems that 
involved the physical VEX robot’s 
functioning. Example: “the VEX Ul-
trasonic Rangefinder (sonar sensor) 
measures distance using _____.”

the number of problems in each 

Table 1—Number of Sub-Category Problems  
and Sub-Category Alphas

Problem Sub-Category
Number of 
Problems

α

Algorithmic Thinking 4 0.54

General Programming 13 0.56

ROBOTC Syntax 37 0.84

Physical Robot 19 0.81

                  For the study, 
                 one class used  
                physical VEX  
 robots, the other 
            used virtual VEX  
           robots.
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subcategory and the cronbach’s 
alpha (α; calculated using both con-
ditions’ post-test scores) for each 
category are shown in table 1. Note 
that the sub-categories were not 
mutually exclusive; that is, the same 
problem could fit into multiple sub-
categories.

Due to the uneven number of 
problems in each category, we used 
the proportion of correct answers 
within each category as a measure 
of accuracy. An ANcoVA was per-
formed to control for pre-test scores, 
using condition as the independent 
variable, post-test score as the de-
pendent variable, and pre-test score 
as the covariate.

third, we looked at the number of 
days between participants’ pre-test 
attempt and post-test attempt. this 
was used as a measure of the time 
needed to complete the course, to 

see whether one condition required 
less time than the other to learn the 
same amount of information. A one-
way ANoVA (analysis of variance) 
was performed, using condition as 
the independent variable and num-
ber of days as the dependent vari-
able.

Results
Overall Scores

No differences were found be-
tween the Physical and Virtual class-
es in their overall post-test scores 
(with pre-test score controlled) 
[F(2, 23)=0.19, p=0.67] when pre-test 
scores were controlled. both classes 
began with similar pre-test scores 
and ended with similar post-test 
scores. Figure 1 shows that overall 
learning gain did not differ by pre-
test score, as almost all participants 
improved regardless of their pre-test 
score. the average pre-test and post-

test scores for both classes can be 
found in table 2.

Sub-Category Scores
With pre-test score controlled, the 

two classes did not show any learn-
ing differences across the four sub-
categories of algorithmic thinking 

[F(2, 23)=0.061, p=0.81], general pro-
gramming [F(2, 23)=1.3, p=0.27], Ro-
botc syntax [F(2, 23)=0.079, p=0.78], 
or physical robots [F(2, 23)=0.11, 
p=0.74]. the average pre-test and 
post-test scores (and standard de-
viations), measured as proportion 
correct, for each sub-category for the 
two classes can be found in table 3.

Time Taken
the average time taken for both 

classes to complete the program-
ming course can be seen in table 2. 
the Physical class took significantly 

more time than the Virtual class [F(1, 
24)=30.3, p<0.001]. All students in the 
Physical class completed the course 
in the same amount of time, as work-
ing with Physical robots did not 
afford them the same freedom of stu-
dents in the Virtual class of working 
independently through the course. 

Table 2—Averages (and Standard Deviations) of Pre-Test Score, Post-Test 
Score, and Time Taken, Separated By Condition

Condition Pre-Test Average Post-Test Average Average Time Taken

Physical 50.2 (SD=11.2) 82 (SD=10.6) 85.0 (SD=0.0)

Virtual 55.9 (SD=11.5) 84.5 (SD=14.6) 54.7 (SD=18.2)

Table 3—Average Proportion Correct (and Standard Deviations) of Each Sub-Category, Separated by Condition

Condition
Algorithmic 

Thinking 
Pre-Test

Algorithmic 
Thinking 
Post-Test

General  
Programming 

 Pre-Test

General  
Programming  

Post-Test

ROBOTC 
Syntax  

Pre-Test

ROBOTC 
Syntax 

Post-Test

Physical 
Robot 

Pre-Test

Physical 
Robot 

Post-Test

Physical 0.67
(0.27)

0.88
(0.20)

0.54
(0.12)

0.79
(0.11)

0.49
(0.10)

0.81
(0.11)

0.42
(0.12)

0.82
(0.16)

Virtual 0.80
(0.29)

0.95
(0.14)

0.59
(0.12)

0.86
(0.15)

0.51
(0.11)

0.83
(0.16)

0.51
(0.14)

0.86
(0.17)

Fig. 1—Pre-test score vs. post-test score. Points above the 
line improved on the post-test compared with pre-test.

Fig. 2—Days taken to complete the course,  
separated by condition
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Table 4—Average Pre-Test Score, Post-Test Score, and Days Taken to  
Complete the Course (and Their Standard Deviations), Separated by Class

Class Average Pre-Test 
Score

Average Post-Test 
Score

Average Days 
Taken

Class 2 (N=23) 65.3 (SD=10.5) 90.3 (SD=6.7) 49.8 (SD=12.3)

Class 3 (N=13) 68.3 (SD=12.3) 87.4 (SD=8.1) 20.5 (SD=1.7)

thus, due to heterogeneity of vari-
ance, we also ran a t-test with equal 
variances not assumed, which was 
significant [t(24)=6.5, p<0.001, d=2.2]. 
overall, the Physical class took an 
extra 30.3 days (approximately one 
month) to complete the course than 
the Virtual class (see Fig. 2).

Summary
both the Physical class and the 

Virtual class showed equal learn-
ing gains, as their overall post-test 
scores were the same (controlling for 

pre-test scores). the type of learn-
ing did not differ between the two 
classes either, as evidenced by the 
equal learning gains seen across all 
four sub-categories. However, the 
Virtual class did show a time reduction 
benefit, as they completed the course 
about a month earlier than the Physi-
cal class, with no effect on their over-
all learning. this suggests that work-
ing with the virtual robots allowed 
students to learn more efficiently.

the teacher’s informal observa-
tions support this conclusion. the 
teacher noted that students in the 
Physical class had to deal with the 
additional mechanical issues that 
came from working with a physical 
robot. consequently, the teacher 
spent much more of his time in the 
Physical class helping students with 
communication problems between 

the robot and computer. in the Vir-
tual class, the teacher and students 
were able to focus their time on 
programming instead of the mechani-
cal side.

Comparison  
with Other Virtual Classes

to confirm that the learning gains 
and time savings seen in the Vir-
tual class were consistent, we also 
looked at two additional classes that 
completed the same programming 
course with virtual VEX robots. A 

graph comparing the three courses’ 
pre-test scores, post-test scores, and 
days to complete the course can be 
seen in Fig. 3. one class (class 2) had 
23 students who completed both the 
pre-test and post-test, and the other 
class (class 3) had 13 students who 
completed both the pre-test and 
post-test.

We ran a paired t-test for each 
class to compare total pre-test scores 
to total post-test scores. Average 
pre-test score and post-test score for 
both classes can be seen in table 4. 
both class 2 [t(22)=-14.4, p<0.001] 
and class 3 [t(12)=-7.1, p<0.001] 
significantly improved their scores 
on the post-test, suggesting that the 
course led to comparable program-
ming learning gains across the three 
Virtual robot classes.

to compare the time taken by 

each class to complete the course, 
we ran a one-way ANoVA, using class 
(class 1 being the Virtual class in the 
study above, class 2 being the class 
of 23 students, and class 3 being the 
class of 13 students) as the indepen-
dent variable and number of days 
as the dependent variable. Average 
number of days taken to complete 
the course can be seen in table 4. 
the ANoVA was significant [F(2, 
48)=31.6, p<0.001], and a post-hoc 
contrast showed that class 3 took 
significantly less time than the other 
two classes. Again, due to heteroge-
neity of variance between class 3 and 
the other two classes, we also ran 
an independent t-test comparing the 
amount of time taken by classes 1 
and 2 (combined) and class 3, which 
was significant [t(49)=13.2, p<0.001]. 
this suggests that Virtual robots 
in all three Virtual classes allowed 
students to complete the course in 
significantly less time than the Physi-
cal class in the study above.

this article will be continued in 
the next issue of Tech Directions. to 
learn more about RVW go to www.
robotc.net. 
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