
N O V E M B E R / D E C E M B E R 2012 6968 R O B O T M A G A Z I N E

E D U B O T S

esearchers at Carnegie
Mellon University (CMU)
conjecture that a robotic
simulation environment

will prove to be a better tool to teach
computer science principles than a
physical robot. It is unlikely that robot-
ic simulation will convey all key aspects
of engineering, electronics, and design,
but it may be a better tool for teaching
robot programming. This article
describes the collaborative research
between CMU and the University of
Pittsburgh (PITT), the results of prior
research when teachers have used phys-
ical robots to teach programming, the
results of our pilot study of learning
with simulated robots, new tools avail-
able to students learning how to pro-
gram, and how you can participate in
our upcoming studies.

CAN ROBOTS BE USED
TO TEACH NOVICE
PROGRAMMING?

Many teachers have brought
robots into their computer
science classrooms, and there
have been numerous studies
designed to measure the
effectiveness of using robots
to motivate and promote
computer science education.
According to a recently pub-
lished review of research in
this area, 74% of studiesi find
that robots are an effective
tool for teaching introductory
computer science principles. The review
also suggested that simulation environ-
ments may increase robotics’ ability to moti-
vate learning computer science by removing
some of the difficulty associated with physi-

cal robots (e.g. cost, setup time, space).
However, there has not yet been much
research investigating robotics simula-
tion as a tool for teaching computer pro-
gramming.

Over the last year, CMU and
Robomatter Inc. have developed an
inexpensive, high-end robotic simula-
tion software named Robot Virtual
Worlds (RVW). RVW is a multiple hard-
ware platform (LEGO, VEX, Arduino),
engaging simulation environment that
enables students without access to
physical robots to practice program-
ming with the same motivational effects
as students that do have access to
robots. The RVW environment has
been embedded into curricula designed
to teach the competencies listed in Table
1. CMU is now working collaboratively
with PITT along with formal and infor-
mal educators to measure the effective-
ness of the new RVW simulation envi-
ronment.

WHAT IS A RVW?
RVW enables students to use code writ-
ten in the ROBOTC programming envi-
ronment to control simulated robots in
physics enabled digital worlds. ROBOTC
can be used to program Arduino, LEGO,

and VEX educational robots. It is also a
legal programming language for VEX,
BEST, FTC, Robofest, and the National
Robotics Challenge robotics competitions.
ROBOTC is a complete development envi-
ronment and includes a powerful runtime
debugger; it has free curriculum and sup-
port at the ROBOTC website and is used in
over 8,000 schools. A key feature of
ROBOTC and RVW is that students can use
the exact same code to control both simulat-
ed and physical robots. There are nearly
one hundred physics-enabled RVW simu-
lated environments including: typical class-

room tabletop activities (Figure 1),
competition environments (Figure
2), and game-like fantasy environ-
ments (Figure 3). These features
enable researchers to setup parallel
studies and compare the results.
Study one will extend promising
pilot results of learning using the
ROBOTC curriculum with the RVW
simulation software; study two will
compare RVWs and physical robots
using a shared ROBOTC curricu-
lum.

PILOT STUDY, CAN RVW BE
USED TO TEACH COMPUTER

SCIENCE PRINCIPLES?
In January 2012, the research team
recruited two middle school teams
that recently participated in CMU’s
FLL competition to be part of a
RVW pilot study; the research team
wanted to know if RVW could be
used to teach novice programming
skills. Neither teacher in the study
had experience using ROBOTC.
Students in the study used a cur-
riculum that was integrated into a
Learning Management System
(LMS) that is part of the DARPA-
sponsored Computer Science
Student Network (CS2N). Students
used a combination of the RVW
tabletop simulations and the fanta-
sy based Palm Island programming
environment to learn basic pro-
gramming. Each student was
required to complete a 50-question
pretest prior to the
course, and an
identical 50-ques-

tion post-test at the end of
the course. Across the two
classes, 31 students com-
pleted both pretest and
post-test.

LEARNING
IMPROVEMENTS

There was a statistically
significant improvement
from pretest scores to
post-test scores in both
schools, with an average
increase of 16 points out of

100. Even though there were differences in
the kinds of schools, with differing teach-
ing styles and student backgrounds, stu-
dents across these settings were equally
likely to show performance improvements
(just below 16 points in one school and just
above 16 points in the second school).

The scatterplot below of pretest scores
versus post-test scores suggests that equal
learning occurs across all performance lev-
els. Any point on the y=x line indicates a
student with no gain from pre to post, and
all points above the line are students show-
ing gains. The majority of students showed
evidence of learning after taking the
course, and the extent of learning did not
vary based on their pretest scores. That is,
students who already knew a fair amount
of programming gained about the same as
students who had almost no prior pro-
gramming skills.

WHAT TYPES OF
QUESTIONS DID WE ASK?

The questions on the pretest and post-test
were categorized into four category types
(and a few problems involved combina-
tions):
Robot-Specific Behaviors: questions about
the physical robot’s functions (e.g.,
“Choose the picture that best illustrates a
point turn”)

ROBOTC Syntax: questions about pro-
gramming commands that are used in
ROBOTC (e.g., “Which lines in the follow-
ing code are responsible for controlling
how long the robot moves?”)

by Jesse Flot, Computer Scientist, CMU; Dr. Chris Schunn, Cognitive Scientist, the University of
Pittsburgh; Allison Lui, Graduate Student, the University of Pittsburgh; and, Robin Shoop, Director of
CMU’s Robotics Academy

R

Learning How to Program
via Robot Simulation
Robot Virtual Worlds (RVW) opens doors for learning robotics

Figure 1.

Figure 2.

Figure 3.

Comparison chart

N O V E M B E R / D E C E M B E R 2012 6968 R O B O T M A G A Z I N E

E D U B O T S

esearchers at Carnegie
Mellon University (CMU)
conjecture that a robotic
simulation environment

will prove to be a better tool to teach
computer science principles than a
physical robot. It is unlikely that robot-
ic simulation will convey all key aspects
of engineering, electronics, and design,
but it may be a better tool for teaching
robot programming. This article
describes the collaborative research
between CMU and the University of
Pittsburgh (PITT), the results of prior
research when teachers have used phys-
ical robots to teach programming, the
results of our pilot study of learning
with simulated robots, new tools avail-
able to students learning how to pro-
gram, and how you can participate in
our upcoming studies.

CAN ROBOTS BE USED
TO TEACH NOVICE
PROGRAMMING?

Many teachers have brought
robots into their computer
science classrooms, and there
have been numerous studies
designed to measure the
effectiveness of using robots
to motivate and promote
computer science education.
According to a recently pub-
lished review of research in
this area, 74% of studiesi find
that robots are an effective
tool for teaching introductory
computer science principles. The review
also suggested that simulation environ-
ments may increase robotics’ ability to moti-
vate learning computer science by removing
some of the difficulty associated with physi-

cal robots (e.g. cost, setup time, space).
However, there has not yet been much
research investigating robotics simula-
tion as a tool for teaching computer pro-
gramming.

Over the last year, CMU and
Robomatter Inc. have developed an
inexpensive, high-end robotic simula-
tion software named Robot Virtual
Worlds (RVW). RVW is a multiple hard-
ware platform (LEGO, VEX, Arduino),
engaging simulation environment that
enables students without access to
physical robots to practice program-
ming with the same motivational effects
as students that do have access to
robots. The RVW environment has
been embedded into curricula designed
to teach the competencies listed in Table
1. CMU is now working collaboratively
with PITT along with formal and infor-
mal educators to measure the effective-
ness of the new RVW simulation envi-
ronment.

WHAT IS A RVW?
RVW enables students to use code writ-
ten in the ROBOTC programming envi-
ronment to control simulated robots in
physics enabled digital worlds. ROBOTC
can be used to program Arduino, LEGO,

and VEX educational robots. It is also a
legal programming language for VEX,
BEST, FTC, Robofest, and the National
Robotics Challenge robotics competitions.
ROBOTC is a complete development envi-
ronment and includes a powerful runtime
debugger; it has free curriculum and sup-
port at the ROBOTC website and is used in
over 8,000 schools. A key feature of
ROBOTC and RVW is that students can use
the exact same code to control both simulat-
ed and physical robots. There are nearly
one hundred physics-enabled RVW simu-
lated environments including: typical class-

room tabletop activities (Figure 1),
competition environments (Figure
2), and game-like fantasy environ-
ments (Figure 3). These features
enable researchers to setup parallel
studies and compare the results.
Study one will extend promising
pilot results of learning using the
ROBOTC curriculum with the RVW
simulation software; study two will
compare RVWs and physical robots
using a shared ROBOTC curricu-
lum.

PILOT STUDY, CAN RVW BE
USED TO TEACH COMPUTER

SCIENCE PRINCIPLES?
In January 2012, the research team
recruited two middle school teams
that recently participated in CMU’s
FLL competition to be part of a
RVW pilot study; the research team
wanted to know if RVW could be
used to teach novice programming
skills. Neither teacher in the study
had experience using ROBOTC.
Students in the study used a cur-
riculum that was integrated into a
Learning Management System
(LMS) that is part of the DARPA-
sponsored Computer Science
Student Network (CS2N). Students
used a combination of the RVW
tabletop simulations and the fanta-
sy based Palm Island programming
environment to learn basic pro-
gramming. Each student was
required to complete a 50-question
pretest prior to the
course, and an
identical 50-ques-

tion post-test at the end of
the course. Across the two
classes, 31 students com-
pleted both pretest and
post-test.

LEARNING
IMPROVEMENTS

There was a statistically
significant improvement
from pretest scores to
post-test scores in both
schools, with an average
increase of 16 points out of

100. Even though there were differences in
the kinds of schools, with differing teach-
ing styles and student backgrounds, stu-
dents across these settings were equally
likely to show performance improvements
(just below 16 points in one school and just
above 16 points in the second school).

The scatterplot below of pretest scores
versus post-test scores suggests that equal
learning occurs across all performance lev-
els. Any point on the y=x line indicates a
student with no gain from pre to post, and
all points above the line are students show-
ing gains. The majority of students showed
evidence of learning after taking the
course, and the extent of learning did not
vary based on their pretest scores. That is,
students who already knew a fair amount
of programming gained about the same as
students who had almost no prior pro-
gramming skills.

WHAT TYPES OF
QUESTIONS DID WE ASK?

The questions on the pretest and post-test
were categorized into four category types
(and a few problems involved combina-
tions):
Robot-Specific Behaviors: questions about
the physical robot’s functions (e.g.,
“Choose the picture that best illustrates a
point turn”)

ROBOTC Syntax: questions about pro-
gramming commands that are used in
ROBOTC (e.g., “Which lines in the follow-
ing code are responsible for controlling
how long the robot moves?”)

by Jesse Flot, Computer Scientist, CMU; Dr. Chris Schunn, Cognitive Scientist, the University of
Pittsburgh; Allison Lui, Graduate Student, the University of Pittsburgh; and, Robin Shoop, Director of
CMU’s Robotics Academy

R

Learning How to Program
via Robot Simulation
Robot Virtual Worlds (RVW) opens doors for learning robotics

Figure 1.

Figure 2.

Figure 3.

Comparison chart

70 R O B O T M A G A Z I N E

E D U B O T S

Algorithmic Thinking: questions that
require thinking about how to solve a
problem or evaluate a program (e.g.,
“Which example of pseudocode would
be most helpful for solving the maze?”)

General Programming: questions that
involve programming knowledge that is
applicable to many other languages, not
just ROBOTC (e.g., “Which data type is
used to store numbers like 3.1415, 6.234,
and 9.323?”)

All categories showed significant
learning gains, but there was some varia-
tion in gains across categories. In gener-
al, problems with
significant improve-
ment involved
knowledge that stu-
dents gained while
writing their own
programs, such as
programming syn-
tax, whitespace and
comment usage, understanding code
(what will a given program cause the
robot to do), and common variables and
operators (such as floats, integers, and
logical not).

There was also some noticeable varia-
tion among algorithmic thinking prob-

lems. Students showed improvements on
ROBOTC-specific algorithmic thinking
(e.g., what will a given program do), but
appeared to have difficulties with broad-
er algorithmic thinking (e.g., how to
avoid future flaws in a program, or how
to plan a program using pseudocode).

For each question category, the num-
ber of problems, the Cronbach ? (how
reliable the measure is), the mean %
improvement from pre to post, and the
effect sizes (Cohen’s d; change measured
in standard deviation units; greater than
0.8 is considered a large effect) of the
pre-to-post improvements:

NEW TOOLS AVAILABLE TO
MOTIVATE AND ASSESS LEARNING
The research team has recently devel-
oped a set of automated web-based tools
designed to report student progress as it
motivates and assesses student learning
(Figure 4); these tools are being integrat-

ed into DARPA’s CS2N (www.cs2n.org),
we are calling this CS2N function a
Group. CS2N Groups combines a guided
learning experience using an LMS, the
RVW software, and automated reporting
allowing informal and formal education
teachers to track students’ progress as
they work through the lessons. CMU has
iteratively tested and developed groups
during their summer teacher profession-
al development courses. This fall over
100 certified teachers will test the CS2N’s
Groups feature; CMU is offering free
training and access to RVW through
CS2N to all FTC and VEX robotic compe-
tition coaches, when they complete the
course they will be able to offer Robotics
Academy ROBOTC Certi-fication to their
students. During the fall study, PITT
and CMU will collect anonymized data
to help answer the question “Do stu-
dents learn to program robots better via
simulation than with physical robots?”,
read below to see how you can become
involved in the study.

HOW CAN YOU PARTICIPATE
IN THE NEXT STUDIES?

CMU and PITT are looking for informal
and formal education partners to partici-
pate in one of two different studies. In
Study 1, we want to look for even larger
learning gains of virtual-only instruction
using the new CS2N Groups tools. In
Study 2, we want to investigate the over-
all learning gains from physical versus
virtual robots. Research partners will
receive free RVW software, curricular
materials, and access to CS2N’s LMS. In
order to participate, partners will need to
commit to the following:
Have their students take the pre and
posttests on CS2N
Use the “Groups” feature in CS2N in
order to track your students’ progress.
Use the CS2N LMS to learn ROBOTC
LEGO or VEX programming.
Interested partners can find more infor-
mation at www.cs2n.org/educators/rvw.

i Systematic Literature Review: Teaching Novices
Programming Using Robots
L. Major, T. Kyriacou and O. P. Brereton, (2011).
15th Annual Conference on Evaluation &
Assessment in Software Engineering, p 21-30.

Figure 4, CS2N Groups Interface

