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Learn to Program
in Half The Time!

by Allison Liu, Graduate Student, University
of Pittsburgh; Jeff Newsom, Technology
Teacher, Penn Trafford High Schoal,
Pittsburgh, Pennsylvania; Chris Schunn,
Cognitive Scientist, University of Pittsburgh;
Robin Shoop, Director, Carnegie Mellon
Robaotics Academy

Virtual Sims make students smarter

obotic systems make up a hundred-billion
Rdollar emerging industry. Robots are every-

where, we just don’t call them robots. We
call them cell phones, bank machines, cars,
microwaves, the Internet... Robotic technologies are
ubiquitous and are making it easier for humans to
drive cars, access money, find restaurants via their
cell phone, or cook their food using a microwave. We
are in the middle of a robotic revolution.

The brains of robotic systems are driven by
Computer Science (CS). CS will play a key role in
nearly all future innovation, including advancements
across all science, technology, engineering, and math-
ematics (STEM) fields, yet sadly the U.S. has entered
into a significant national decline in the number of
college graduates with basic and advanced CS-STEM
degrees. This downward trend is particularly pro-
nounced in CS. In 2010, the National Science Board
reported that the U.S. does not graduate enough com-
puter scientists to meet its own demand, and there-
fore has to rely on foreign-born talent and this trend
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will likely continue.

At the high school level, the focus on high stakes testing topics cou-
pled with increased emphasis on Advance Placement courses has
squeezed out coursework in many areas including computer science.
DARPA’s CS2N project recently funded a research study conducted
by Carnegie Mellon University’s Robotics Academy and the
University of Pittsburgh’s Learning Research and Development
Center, and the results proved to be positive from both a teaching and
learning perspective.

Robotics appears to be an activity that excites students to consider
CS-STEM careers. Between the FIRST and VEX competitions there
are over 20,000 US teams, but our surveys indicate that the majority

of the kids on those teams do not consider themselves programmers.
The Robot Virtual Worlds (RVW) project team hopes to significantly
increase the number of kids on robotic teams that identify them-
selves as programmers. We believe that early programming environ-
ments more like current gaming platforms will be motivational and
kids will want to play them and formal and informal education sys-
tems will want to use them to introduce students to programming.

In the November 2012 issue of ROBOT Magazine, we asked
ROBOT magazine readers if they wanted to participate in our RVW
research project where we were going to compare computer pro-
gramming results of classrooms using real robots versus classrooms
learning to program using virtual robots. This article reports on the
second phase of that study.

Our team worked with Jeff Newsom, a Tech Ed Teacher from Penn-
Trafford High School, on the study. At the end of the project he had
this to say about RVWs: “When I first heard about RVWs and how
they worked, I knew I wanted to try them. During the study I had one
class learning to program using the RVWs and the other using the
physical robots; by the end of the study my suspicions were con-
firmed. The RVWs allowed my students to learn the same amount of
material in a lot less time. The RVWs provide immediate feedback
when the students are focused on programming. They also provide
opportunities for them to work from home if they fell behind, or need-
ed more time to learn a concept, or just wanted to learn more.

“With less time spent on setup, communications, electrical and
mechanical problems, and cleanup, the RVW class was able to learn
programming much more quickly. My students were surveyed at
the end of the class and the students’ feedback was very positive. As
for the class working with the physical robots, their main complaints
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were around communication or mechanical problems they ran into
while trying to test their programs. Any time I have the opportunity
to have my students learn more efficiently, I am going to take advan-
tage of it. Needless to say, RVW will be part of my curriculum for all
of my future classes.”

A DESCRIPTION OF THE STUDY:
PHYSICAL VS. VIRTUAL PROGRAMMING

In our first study we validated that RVW software allowed students to
learn basic robot programming. In this study we were interested in
studying the difference between classes that learned programming
using simulation verse physical robots. We were seeking a school that
taught multiple sections of robotics and that would agree to have one
section of students learn to program via the RVW technology and the
other section using physical robots; once programming was taught
both sections would complete the course using physical robots. We
selected a local public high-school that taught two elective “introduc-
tion to robotics” courses and the same teacher taught both classes. One
class completed a ROBOTC programming course using physical VEX
robots (the Physical class), while the other class completed a ROBOTC
programming course using virtual VEX robots (the Virtual class).
Thirteen students were in the Physical class, and 17 students were in
the Virtual class. Both classes consisted primarily of freshmen and
sophomore students with little to no prior programming experience.

Both the Physical class and the Virtual class completed the same
pre-test and post-test online. The pre-test and post-test contained the
same 50 items, and both classes completed the pre-test around the
same date. Eleven students in the Physical class and 15 students in
the Virtual class completed both the pre-test and post-test, and were
included in the analyses. Analyses investigated whether there were
learning differences between students who interacted with physical
robots versus students who interacted with virtual robots.

THE EXPERIMENT

Three analyses were performed on the data. First, students’ total
scores on the pre-test were compared to their total scores on the
post-test. To control for students’ differing pre-test scores, an ANCO-
VA was run using condition (Physical or Virtual) as the independent
variable, post-test score as the dependent variable, and pre-test score
as the covariate. Second, we examined whether learning differed
across topic sub-categories. Four sub-categories were defined, into
which all problems on the pre-test and post-test could be placed.
These sub-categories were:

Algorithmic thinking: Problems that involved thinking through the
process of the programming problem (e.g., planning the program,
using pseudocode, predicting what a program would do) or more
abstract concepts of programming. Example: “Given the program
above, the robot will do __”

General programming: Problems that involved syntax or concepts
that are applicable to multiple programming languages. Example: “If
the condition of an If statement is true, then all of the code inside of
its curly braces will run: True/False”

ROBOTC Syntax: Problems that involved ROBOTC syntax or the
ROBOTC program (e.g., how to use menus in the ROBOTC application).
Example: “To make the robot stop, you set its motor values equal to __”

Physical Robot: Problems that involved the physical VEX robot’s

functioning. Example: “The VEX Ultrasonic Rangefinder (sonar sen-
sor) measures distance using __”
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The number of problems in each sub-category and the Cronbach’s
alpha (?; calculated using both conditions” post-test scores) for each cate-
gory are shown in Table 1. Note that the sub-categories were not mutually
exclusive; that is, the same problem could fit into multiple sub-categories.

Number of | @

Problems
Algorithmic Thinking 4
General Programming 13
ROBOIC Syntax 37
Physical Robot 19

Problem Sub-Category

54
.56
.84
81

Due to the uneven number of problems in each category, we used
the proportion of correct answers within each category as a measure
of accuracy. An ANCOVA was performed to control for pre-test
scores, using condition as the independent variable, post-test score as
the dependent variable, and pre-test score as the covariate.

Thirdly, we looked at the amount of days between participants’
pre-test attempt and post-test attempt. This was used as a measure of
the time needed to complete the course, to see whether one condition
required less time than the other to learn the same amount of infor-
mation. A one-way ANOVA was performed, using condition as the
independent variable and number of days as the dependent variable.

THE RESULTS
Overall Scores. No differences were found between the Physical and
Virtual class in their overall post-test scores. Both classes began with sim-
ilar pre-test scores and ended with similar post-test scores. Figure 1
shows that overall learning gain did not differ by pre-test score, as almost
all participants improved regardless of their pre-test score. The average
pre-test and post-test scores for both classes can be found in Table 2.
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Figure 1. Pre-test score vs. post-test score. Points above the line
improved on the post-test compared to pre-test.

Condition Pre-Test Post-Test Average Time
Average Average Taken

Physical 502 (SD=11.2) | 82 (SD=10.6) | 85.0 (SD=0.0)

Virtual 55.9 (SD=11.5) | 84.5 (SD=14.6) | 54.7 (SD=18.2)

Table 2. Averages (and standard deviations) of pre-test score, post-
test score, and time taken, separated by condition.

Time Taken. The average time taken for both classes to complete the
programming course can be seen in Table 2; the Physical class took
significantly more time than the Virtual class. All students in the
Physical class completed the course in the same amount of time, as
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working with Physical robots did not afford them the same freedom
of students in the Virtual class, who could work independently
through the course. Overall, the Physical class took an extra 30.3
days (approximately one month) to complete the course than the
Virtual class (see Figure 2).
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Figure 2. Days taken to complete the course, separated by condition.

SUMMARY

Both the Physical class and the Virtual class showed equal learning
gains. The type of learning did not differ between the two classes
either, as evidenced by the equal learning gains seen across all four
sub-categories. However, the Virtual class did show a time reduction
benefit, as they completed the course about a month earlier than the
Physical class, with no effect on their overall learning. This suggests
that working with the virtual robots allowed students to learn more
efficiently in this context when compared to the physical robots.

The teacher’s informal observations support this conclusion. The
teacher noted that students in the Physical class had to deal with the
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daily robot setup, additional mechanical issues, and the cleanup that
comes with working with a physical robot. Consequently, the teacher
spent much more of his time in the Physical class helping students
with robot communication, mechanical, and class organization
issues. In the Virtual class, he and his students were able to focus
100% of their time on learning programming.

To confirm that the learning gains and time savings seen in the
Virtual class were consistent, we also looked at two additional class-
es who completed the same programming course with virtual VEX
robots. A graph comparing the three courses’ pre-test scores, post-
test scores, and days to complete the course can be seen in Figure 3.
The graph suggests that Virtual robots in all three Virtual classes
allowed students to complete the course in significantly less time
than the Physical class in the study above.
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Figure 4. Average pre-test score, post-test score, and days to com-
plete the course, separated by class.

Class Average Pre- | Average Post- Average
Test Score Test Score Davs Taken
Class 2 (N=23) | 653 (5D=10.5) | 90.3 (3D=6.7) | 49.8 (SD=12.3)
Class 3 (N=13) | 68.3 (SD=12.3) | 87.4(SD=8.1} 20.5 (SD=1.7)

Table 4. Average pre-test score, post-test score, and days taken to com-
plete the course (and their standard deviations), separated by class.

To see a more comprehensive version of the study, please visit:
www.cs2n.org/teachers/research.

VEX Sensorbot.

LEGO Doggy.

Links

Carnegie Mellon Robotics Academy,
www.education.rec.ri.cmu.edu,

(412) 681-7160

DARPA CS2N, www.cs2n.org

Robot Virtual Worlds Download,
www.robotc.net/download/rvw

For more information, please see our
source guide on page 80.
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