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Computational thinking describes key principles from computer science that are broadly generalizable. Ro-

botics programs can be engaging learning environments for acquiring core computational thinking com-

petencies. However, few empirical studies evaluate the effectiveness of a robotics programming curriculum

for developing computational thinking knowledge and skills. This study measures pre/post gains with new

computational thinking assessments given to middle school students who participated in a virtual robotics

programming curriculum. Overall, participation in the virtual robotics curriculum was related to significant

gains in pre- to posttest scores, with larger gains for students who made further progress through the cur-

riculum. The success of this intervention suggests that participation in a scaffolded programming curricu-

lum, within the context of virtual robotics, supports the development of generalizable computational thinking

knowledge and skills that are associated with increased problem-solving performance on nonrobotics com-

puting tasks. Furthermore, the particular units that students engage in may determine their level of growth

in these competencies.
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1 INTRODUCTION

In the last decade, computational thinking has gained a great deal of attention in K-12 computing
education. It is typically construed as an essential 21st-century skill that draws on algorithmic
thinking and design processes, but especially in ways that may be generalizable across various
contexts (Grover and Pea 2013; Wing 2006). In 2011, a committee of computer science (CS) ex-
perts, examining the role that CS would play in bringing computational thinking to K-12, broadly
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4:2 E. B. Witherspoon et al.

defined computational thinking as “an approach to solving problems in a way that can be solved by
a computer. . . a problem solving methodology that can be transferred and applied across subjects”
(Barr and Stephenson 2011). In 2015, national educational policies in the United States specifically
included references to CS as part of a well-rounded science, technology, engineering, and math-
ematics (STEM) education, and the term “computational thinking” was added to the Next Gen-
eration Science Standards as a core scientific practice that could be applied across many science
content areas (Weintrop et al. 2015). Despite its increasing prevalence as a general skill in K-12 ed-
ucation policies, relatively few empirical studies have been conducted to evaluate if instruction in
computational thinking within a robotics environment can reliably produce computational skills
that are useful for problem solving in other contexts.

1.1 Developing Tools for Generalizable Computational Thinking Instruction

Students can be exposed to aspects of computational thinking, including algorithmic thinking, by
engaging in computer programming through diverse means such as website design, modeling and
data analysis tools in science, and robotics (Lye and Koh 2014). While measures of transferrable
CT have been developed in a variety of specific contexts, few have been applied within middle
school robotics (Koh and Motter 2013; Werner and Kawamoto 2012). Recent studies of computa-
tional thinking that make use of visual programming languages and virtual learning environments
show evidence of the development of computational practices like abstraction and algorithm de-
velopment as well as increased interest in computing in those contexts (Hambrusch and Hosking
2009; Werner et al. 2012). Advances in visual environments (e.g., Alice) and graphical programming
languages (e.g., Scratch) have led to a renewed interest in understanding the kinds of generalizable
skills that programming might develop for a broader range of students across disciplines (Brennan
and Resnick 2012; Lye and Koh 2014). Visual languages are thought to reduce the cognitive load
required for novice programmers and allow for learners to attend to higher-level computational
principles (Kelleher and Pausch 2005). By making output more visually concrete or reducing un-
necessary syntax and effectively “chunking” textual elements through the visual representations of
certain coding functions, students are able to focus more closely on the structural logic of program-
ming (Robins and Rountree 2010). Providing rich, diverse programming contexts, as well as new
technologies that provide a “low threshold” and “high ceiling” (Repenning and Ioannidou 2010)
for novice programming students, could teach computing more effectively and approachably.

As momentum builds around including computational thinking in K-12 education, it will be
necessary to design CS curricula that use new technologies in ways that adequately prepare and
engage all students in developing the necessary computational skills for a 21st-century CS work-
force (National Research Council 2010). Technological advances in most workplaces over the last
25 years have led to an overall decline in the number of jobs requiring rote skills and an increase
in the need for workers who are prepared for complex, unstructured problem-solving tasks (Lee
and Apone 2014). The field of CS has been no different; applications of computational problem
solving are required in a much broader range of careers outside of those traditionally related to CS
training. Indeed, now individuals and employers are required to dynamically use STEM skills in a
variety of contexts that may be very different from that of their initial training (National Science
Board 2015). This suggests that the most valuable kinds of skills are those that are generalizable
and generative, rather than specific technical knowledge that quickly becomes obsolete. There-
fore, while more specialized CS courses currently exist at the high school level, providing a more
generalizable base of computational knowledge and skills at the middle school level may offer a
productive opportunity for intervention. Furthermore, although CS is one of the fastest-growing
STEM fields, there is a widening gap in the percentage of women, individuals from low socioe-
conomic backgrounds, and underrepresented minority populations entering CS careers (Atkinson
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and Mayo 2011). Curriculum and instruction that provide all middle school students with equi-
table opportunities to engage in computational thinking in varied contexts could increase overall
participation and promote innovation in the field by including more diverse perspectives (ACM
Education Policy Committee 2014).

Ideally, then, a tool for teaching computational thinking should be designed to take advantage
of advances in new cognitively beneficial technologies, be accessible to learners with limited re-
sources and diverse interests, and, perhaps most importantly, develop a generalizable computa-
tional thinking skill set in learners.

1.2 Robotics as a Context for Learning Computational Thinking

Educational robotics programs have experienced renewed interest and popularity since the early
1990s as engaging and motivating learning contexts that encourage a broad population of students
to pursue STEM career pathways (Melchior and Leavitt 2005). Technological advances have made
robotics more widely accessible to students both by lowering costs and by increasing mechanical
and programmable customizability. In learning contexts, students often use robots as concrete tools
for formalizing unfamiliar and abstract STEM concepts (Alimisis 2012; Okita 2013). In fields like
mathematics and physics, concrete contextualization and interdisciplinary applications of robotics
have been linked with improved domain-specific skills, as well as more general skill development
in problem solving, logic, and scientific inquiry (Benitti 2012). Similarly, early research on com-
puter programming in the context of robotics has been shown to offer unique opportunities for
students to learn CS and develop computational thinking practices (Eguchi 2014; Grover and Pea
2013; Major, Kyriacou and Brereton 2012).

However, it is uncertain whether the knowledge and skills that students acquire in educational
robotics contexts are generalizable to dissimilar contexts in the way that policymakers and advo-
cates of computational thinking intend. Since the 1960s, studies of concrete LOGO programming
tools in K-12 settings have produced varied and sometimes conflicting empirical results regarding
the acquisition of generalizable computer programming skills (Clements and Gullo 1984; Klahr and
Carver 1988; Pea 1983). Specific instruction in LOGO and other programming languages is gen-
erally more successful in achieving transfer of specific declarative skills (e.g., language functions
and syntax), with fewer studies successfully demonstrating acquisition of generalizable procedural
skills (e.g., debugging heuristics (Palumbo 1990)). Salomon and Perkins (1989) propose that these
differences in acquisition arise from the existence of two types of transfer: low road and high road.
Low-road transfer characterizes habituated behavioral patterns that become automatized through
long-term, repeated practice in varied contexts and are subsequently triggered when sufficiently
similar conditions arise. High-road transfer occurs through “deliberate, conscious abstraction from
one context to another” (p. 152) and is more typical of the intentional application of skills from one
context to another. Key to the idea of high-road transfer is the concept of “mindful abstraction,”
where students must possess both a decontextualized representation of a principle or procedure
and an understanding of the particular situations in which it can be instantiated (Salomon and
Perkins 1989, p. 126). Furthermore, providing students with the opportunity to construct these
abstractions autonomously through active learning processes is also believed to facilitate high-
road transfer (Mayer 1974; Mayer and Greeno 1972). Therefore, while low-road transfer is likely
to be developed only after years of programming practice, high-road transfer could be more ef-
ficiently achieved through instruction that teaches students deliberate, metacognitive strategies
for the application of generalizable computational thinking principles. Specifically, learning expe-
riences that provide students with opportunities to actively construct abstract representations of
computational principles and engage in problem-solving tasks with multiple solution pathways
are more likely to facilitate transfer of those general principles.
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When applied to typical K-12 robotics programs in their current form, this theoretical frame-
work raises some concerns about the prospect of students successfully acquiring generalizable
computational skills. Duration is a potential problem—robotics programs in middle schools are
frequently implemented as short (e.g., 6-week) electives that are unlikely to offer sufficient oppor-
tunities for students to practice programming to a degree that would facilitate low-road transfer.
Depth and the explicit emphasis on content are also issues. Software and hardware development
in robotics contexts are often inextricable from one another. However, when the mechanical tasks
are nontrivial, the emphasis in many environments seems to remain largely on correcting me-
chanical error and construction, and a relatively small portion of students are directly involved in
programming (Alimisis 2012; Melchior et al. 2005). Furthermore, robotics programming require-
ments in these environments are often very basic, consisting largely of prescribed sequences of
commands (Alimisis and Kynigos 2009; Liu et al. 2013). A narrow focus on a specific band of basic
content, applied in a single concrete context, would not likely provide opportunities for high-road
transfer. Lack of access to appropriate instructional support may also impede opportunities for
transfer. A 2007 Computer Science Teachers Association report showed that only 12 states re-
quired a CS certification at the middle school level (Khoury 2007). As relative novices themselves,
nondomain expert educators are more inclined to focus on rote, surface-level aspects of instruc-
tion, while de-emphasizing the structural features integral to learners’ development of generaliz-
able practices (Kurland et al. 1986; Catrambone 1998). In informal environments like the popular
FIRST LEGO League robotics competition, a different problem occurs: mentors with professional
engineering experience, while possessing substantial content knowledge, are unlikely to receive
any pedagogical training (Melchior et al. 2005). Thus, without the appropriate curricular supports,
robotics instructors frequently lack the necessary combination of content and pedagogical knowl-
edge (Shulman 1986) required to teach CT-relevant material effectively, and in a conceptually rich
way.

In short, programming education using robots has shown a great deal of potential, including
successful learning outcomes in specifically targeted content areas. However, limited opportunities
to engage in meaningful computer science learning, reinforced by a shortage of teachers trained
in both content and pedagogy, leave it a crucial empirical question whether robotics programming
learning contexts are ultimately capable of building generalized computational thinking skills.

1.3 Research Objectives

The goal of the current study is to evaluate if participation in a visual programming curriculum is
related to measurable gains in students’ ability to apply generalizable computational thinking skills
to dissimilar problem-solving tasks. This curriculum is designed to scaffold the use of technolo-
gies such as graphical programming languages and virtual robotics simulations to produce opti-
mal conditions for the “mindful abstraction” of generalizable computational thinking skills. First,
using a graphical programming language and providing videos that explicitly decontextualize a
core computational concept supports students in extracting the computational principles involved
in programming, by using both of the product and process of abstraction (Salomon and Perkins
1989). Second, offering a variety of increasingly complex problem-solving scenarios in which stu-
dents autonomously apply those principles facilitates the “controlled” metacognitive process of
active learning that theoretically predicts more transfer than passively receiving direct instruction
(Mayer and Greeno 1972; Salomon and Perkins 1989). Preliminary studies with earlier versions of
this curriculum were more narrowly evaluated for programming skills and demonstrated signif-
icant gains (Liu et al. 2013). Here, we hope to expand upon this previous research to determine
if a virtual programming environment can also demonstrate significant learning gains in broader
computational thinking principles, especially as applied in nonrobotics contexts.
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Fig. 1. Examples of the ROBOTC text-based (a) and ROBOTC graphical (b) programming languages.

2 METHODS

2.1 Overview

This article presents two studies of the ongoing evaluation and iterative design of a robotics pro-
gramming curriculum. The first study reported here piloted the curriculum within a single district.
This initial study was used as an opportunity to get feedback on the curricular design, debug the
technical aspects of the curriculum and assessments, and perform an initial exploratory case study
evaluation of the learning gains of the intervention. The second study implemented the curricu-
lum in 26 classrooms across four different school districts, using three separate versions of an
assessment for computational thinking skills and practices as measures of learning gains. In this
study, we tracked each class’s progress through the curriculum and used a pre- and posttest de-
sign with alternative versions to assess if learning gains in computational thinking were related
to amount of participation in the virtual robotics curriculum. It is important to note that while
the programming activities and lessons reported here allowed the curriculum to be run entirely
in the virtual environment, the curriculum was developed to replicate existing physical robotics
hardware; therefore, the capability remained to download and test programs on physical robots
for those teachers who had access to them. While it is possible that some of the teachers took
advantage of this capability, we are confident that these physical activities remain supplemental
and did not compose a majority of instruction.

2.2 Materials

2.2.1 Robotics Programming Curriculum. The online robotics curriculum, developed by
Carnegie Mellon University and Robomatter, involves a sequence of lessons in robotics program-
ming using a unique programming language, ROBOTC Graphical. ROBOTC Graphical is based
on an existing text version of the ROBOTC programming language (see Figure 1(a)) that is de-
signed for more advanced robotics students. ROBOTC Graphical, however, uses a graphical inter-
face intended to support novice students, by focusing on the broader logic of programming while
de-emphasizing the particular syntactic requirements of more traditional programming languages
(see Figure 1(b)).

The curricular materials capitalize on the engaging aspects of robotics competitions, while em-
phasizing the practice of specific programming skills. The curriculum consisted of four instruc-
tional units: Intro to Programming, Basic Movement, Sensors, and Program Flow (see Table 1). The
lessons within each unit were sequenced to develop students’ understanding of basic programming
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Table 1. Curricular Units with Number of Lessons and Content Topics Addressed

Unit Name Lessons Activities General Topics Addressed

Intro to Programming 4 1 Setting up your computer with ROBOTC
System requirements and configuration
Tutorial on operating the ROBOTC

platform
Basic Movement 6 16 Measurement (e.g., centimeters, degrees,

rotations)
Basic forward movement command

sequences
Basic turning command sequences

Sensors 10 19 Uses of sensors in robotics
Equations with inequalities
Boolean logic
If-then conditional statements in

programming
Program Flow 10 18 Repeat and infinite loops

If-else conditional statements in
programming

Repeated decisions (if-else nested within
loops)

Fig. 2. An example of a game-like Robot Virtual Worlds challenge.

concepts (e.g., sequences, conditionals, and looping) as well as key computational concepts in pro-
gramming as they appear in a robotics context (e.g., “Programming Is Precise,” “Sensors, Programs
and Actions,” and “Make Sense of Systems”).

In each unit, students progress through a sequence of virtual robotics problem-solving tasks, us-
ing the ROBOTC Graphical language to develop programmed solutions. Students engaged with the
curriculum through Robot Virtual Worlds, a simulated 3D game-like virtual environment designed
to emphasize the programming aspects of robotics, while aiming to increase student interest and
engagement (see Figure 2).

Students can iteratively test modular programmed solutions with simulated robots in a three-
dimensional virtual platform. Finally, these pieces of code are reused and “remixed” (Brennan and
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Fig. 3. An example of a programmable problem-solving task in the virtual platform. Using if-else statements,

loops, and sensors, students program the robot to sort flags onto the left or right conveyor belt based on their

color.

Resnick 2012) to create compound solutions to more complex virtual challenges (see Figure 3)
in which learners must apply their previous programming knowledge to problem-solving tasks
that foreground computational thinking principles like abstraction, decomposition, and systems
thinking.

By representing robotics challenges in a virtual environment, this curriculum reduces the influ-
ence of mechanical errors that often frustrate novices and can distract from basic programming
concepts. This feature enables programming students to instead focus on higher-level computa-
tional principles. Simulating robot movement within a virtual environment also reflects a common
practice of robotics engineers today. Participating in this process provides students an opportunity
to learn through participating in the authentic practices of a professional community (Lave and
Wenger 1991). Virtual robots are also less expensive than physical ones, allowing the benefits of
the curriculum to reach a broader population where the costs of physical robotics curricula can be
prohibitive. Furthermore, an earlier study by Liu and Shoop (2013) found that students using an
earlier version of this technology achieved learning gains in programming content equivalent to
students using physical robots, but in less time.

The design of the curricular materials reflects a constructivist approach to instruction in which
learners use worked examples, scaffolding, and reflection to build increasingly complex programs.
Each lesson begins with a video of a robot performing an important real-world task; students are
then asked to program their robots to solve an analogous “game board” version of the task. This
sets up topic areas, tasks, and task contexts to put teachers and students “on the same page” (i.e.,
establish intersubjectivity (Puntambekar and Hubscher 2005)). Furthermore, it centers the lesson
around student construction of a solution to the problem, which requires them to construct an
understanding of the requisite programming principles (Papert and Harel 1991).

A series of instructional videos helps students to get started by providing step-by-step direction
on how to code a set of related robot behaviors (but not the solution to the main challenge). These
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Table 2. CT Constructs Measured in the Assessment, Number of Items, and Example Item Descriptions

Computational Thinking

Constructs

Number

of Items Description of Example Items

Developing algorithms 4 Develop an algorithm by completing a missing
step or correctly combining two algorithms

Evaluating algorithms 7 Determine if an algorithm will accomplish the
task or identify an inaccuracy or inefficiency

Developing abstractions 3 Describe how an algorithm or piece of code will
need to be adjusted to respond to the introduction
of a new variable

Documentation and process 3 Identify procedures for iterative development,
data collection, and documentation

videos use several multimedia approaches for reducing extraneous cognitive processing, manag-
ing essential processing, and fostering generative processing (Mayer 2008). For example, the videos
encourage learners to self-pace by pausing the videos (allowing them to manage cognitive process-
ing) and use a conversational tone (creating a sense of social partnership with the narrator, which
encourages them to try harder to make sense of what the narrator is saying). These features allow
viewers to more effectively process and understand the information being conveyed in the videos.
Meaningful connections between the related-behavior videos and the challenge task are heavily
implied but left to learners to construct.

The rest of the lesson structure uses a partial scaffolding approach (Puntambekar and Hubscher
2005) to assist learners in constructing a solution to the problem-solving task. The videos act as
a direct instructional anchor to a range of incrementally harder virtual challenges (e.g., “Check
Your Understanding” questions, leading to Mini-Challenges, and ultimately the chapter-level Chal-
lenge). Direct instruction is faded in later steps (requiring learners to apply skills more inde-
pendently) and also across lessons (e.g., using simplified movement functions in early lessons
but requiring control of independent motors in later ones). Collectively, these resources provide
teachers a connected strand of resources to support learners with varying initial competencies,
as they develop their understanding toward the level needed to construct a solution to the final
challenge.

2.2.2 Computational Thinking. Assessments for computational thinking were distributed to
students via an online curriculum platform, as part of an evaluation of the online robotics cur-
riculum being tested in these classrooms. For the studies reported here, three different assessment
versions were created, each using different cover scenarios to present 17 structurally isomorphic
Computational Thinking questions, with only minor adaptations made to make the items sensible
for each scenario (see Appendix A for sample assessment items). The purpose of alternative ver-
sions was to allow for longitudinal assessment of the same learners while avoiding large test/retest
effects. The assessment items consisted of 17 multiple-choice questions that measured students’
understanding of CS principles, such as algorithm development, iteration, and Boolean logic (see
Table 2). Each item was scored out of one point, for a possible score range of 0 to 17. Armor’s theta
for the 17 items on these assessments was 0.77. Armor’s theta is similar to Cronbach’s alpha, but is
more appropriate for binary data (item correct vs. incorrect). An Armor’s theta value greater than
0.7 is considered “adequate” for demonstrating internal reliability.

Each assessment presented two real-world scenarios. The first scenario assessed students’ un-
derstanding of computational thinking concepts within a nonrobotics context that was relatively
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Table 3. Pre- and Posttest Means for Sixth Graders in Study 1 by

Gender, with SD, Sample Size and 95% Confidence Intervals for

Mean Difference

Assessment 95% CI for
Pre Post Mean Diff.

M SD n M SD n
Male 6.1 3.9 64 8.2 3.2 62 1.1, 3.1
Female 6.6 3.1 59 8.3 3.1 59 0.7, 2.7
Total 6.3 3.5 123 8.2 3.1 123 1.2, 2.6

similar to that presented within the robotics curriculum (e.g., GPS navigation for self-driving cars).
The second scenario assessed the application of the same computational thinking concepts in a
more dissimilar context (e.g., filling tables at a restaurant from a queue). The increasing contextual
distance of the items (from robotics) was intended to assess whether participation in the robotics
curriculum developed problem-solving strategies that could transfer to nonrobotics tasks.

3 STUDY 1: PILOT PROGRAM AND INITIAL EVALUATION

3.1 Sample

Our initial study consisted of a cohort of sixth graders (N = 123) at a single suburban school district
in southwestern Pennsylvania. The sample was relatively equally divided by gender (male = 52%,
female = 48%). The sample was drawn from a school district that is primarily (99%) white and has
a relatively low percentage of students eligible for free or reduced lunch (12%). A single teacher
elected to be part of the study and taught the same curriculum to all students across five classes
throughout the semester. All classes were 40 minutes long and held 5 days a week.

3.2 Procedure and Analysis

The pretest was administered to students at the end of their fifth-grade school year, after complet-
ing the Basic Movement unit (i.e., before having reached the more complex content). The following
school year, students were enrolled in the robotics course as sixth graders, this time beginning the
curriculum with the Sensors unit and continuing until completing the Program Flow unit. Students
were then assessed on an analogous posttest assessment after participating in a semester-long ro-
botics course using the curriculum; equivalence of the posttest is established in the second study
discussed later. A paired-samples t-test was used to determine if there were significant differences
between pre- and posttests.

3.3 Results

Results from the t-test showed that there were significant differences overall between pre- and
posttest scores, t(122) = 5.44, p < .001, d = 0.57. Important for our goals of expanding access of
computational thinking, these gains were also not differential by gender; there were no significant
differences found between male and female students (see Table 3) on pretest, t(121) = 0.73, p = .47,
or posttest, t(143) = 0.05, p = .96. It is important to note that for this initial study, the expanded
time of implementation could have increased the effect size. We also do not know if a significant
number of students participated in any robotics enrichment activities (i.e., summer camps, robotics
competition teams) over the summer break between the pre- and posttest assessment dates, which
could feasibly impact gains found on the posttest. However, we believed that the results found
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in this initial evaluation were meaningful enough to warrant further studies of the association
between the curriculum and gains on the assessments of computational thinking.

4 STUDY 2: ASSESSMENT VALIDATION AND LEARNING GAINS

4.1 Sample

The sample for the second study consisted of sixth-, seventh-, and eighth-grade (N = 441) students
in multiple robotics classrooms across four schools in southwestern Pennsylvania. Students were
distributed across 26 different robotics classrooms within four suburban school districts and were
split relatively evenly by gender, with slightly more males (56%) than females (44%). These districts
serve student populations that are majority white (87%–99%) and represent a moderate range of
free or reduced lunch eligibility (5%–35%). The four teachers participating elected to be part of the
study and to use the tests and the associated online curriculum within their regularly scheduled
robotics classes. All classes were between 40 and 60 minutes long and held 5 days a week. Most class
sessions ran for about 5 to 7 weeks, with a mean of 34 class days. The teachers had each received
approximately 32 hours of professional development (about 4 days) on the implementation of the
curriculum.

4.2 Procedure and Analysis

4.2.1 Computational Thinking Assessments. Students were randomly assigned to one of three
analogous versions of the computational thinking assessment (“Version A,” “Version B,” or “Ver-
sion C”) for the pretest, and were later assigned to take an alternate version as a posttest. Pretests
were administered prior to the start of instruction with the online curriculum materials; posttests
were administered at the end of the class instructional period, which ranged from 5 to 7 weeks.
For both pre- and posttests, observations in which at least half of the items were not completed
were excluded from analysis, as too little information was collected to make a valid inference and
there were likely additional factors (e.g., attendance, engagement) influencing student responses.
If students completed more than half of the items but left some items unanswered, those responses
were marked as a zero.

The assessment data were first analyzed by version using a one-way ANOVA to determine
if there were statistically significant differences in pretest scores between Version A, Version B,
and Version C of the computational thinking assessments. Next, students’ pre- and posttest data
were matched and a paired-samples t-test was performed to determine if there were significant
differences in individual gains in pre- and posttest scores overall across grade levels. Finally, an
ANCOVA was performed to test if there was a significant association between student completion
of additional units of the curriculum and learning gains on the pre- and posttests. Effect sizes are
reported as Cohen’s D, using the conventional thresholds for small (d = .20), medium (d = .50),
and large (d = .80) effects (Cohen 1992).

4.2.2 Progress. Progress was measured based on completion of assignments and formative
quizzes, which were then compiled into a total progress score for each unit. As lessons included
both optional and repeated content, completing a unit did not require finishing every available ac-
tivity. If a student completed more than 50% of the available activities for a particular lesson within
a unit, that student was marked as completing that particular lesson. Because some units offered
multiple opportunities to practice similar lessons and teachers may have students skip over these,
students who completed at least 40% of the lessons in the unit were considered to have fully en-
gaged with the concepts in that unit, and therefore were marked as having completed it. Progress
was then recoded as an ordinal variable indicating increasing progress through the curriculum
(Introduction = 1, Basic Movement = 2, Sensors = 3, and Program Flow = 4).
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Table 4. Pre- and Posttest Means in Study 2, with SD, Sample Size and 95%

Confidence Intervals for Mean Difference

Pre Post 95% CI for
M SD n M SD n Mean Diff.

Total 7.2 3.1 364 7.8 3.4 364 0.3, 0.9

The Introduction unit primarily consisted of non-programming-related instruction of how to
set up the software and navigate the course menus (see Table 1). As a result, after their first group
of students, many teachers felt they had sufficient understanding and decided to skip this unit
for subsequent groups. Therefore, in the analyses presented here, progress measures are reported
for only the content-based units of Basic Movement, Sensors, and Program Flow. Observations
reporting no progress were used only to check for test-retest effects.

4.3 Results

4.3.1 Testing the Equivalence of Versions. For the initial analysis, a one-way ANOVA of pretest
scores across all students who completed the test (n= 426) was conducted to determine the reliabil-
ity of the different versions of the assessment, by comparing the relative performance for students
who took Version A (n = 97, M = 7.6, SD = 3.2), Version B (n = 208, M = 7.1, SD = 3.2), and Version C
(n = 121, M = 6.8, SD = 2.8). Results showed no significant differences in means between any of the
test versions, F(2,425)= 1.96, p= .14. Therefore, as these appear to be relatively analogous measures
of computational constructs, results from all three versions will be collapsed in further analyses.
To check for the possibility of test-retest effects, we also examined pre/post differences between
n = 26 students who reported no progress through the curriculum. Overall, this group of students
had slightly lower pretest scores from students who completed the curriculum, t(326) = 2.06, p <
.05, d = 0.40, but were otherwise comparable (i.e., from the same classrooms and school districts
as the group who made progress through the curriculum). Results for the no-progress group show
marginal gains, t(26) = 2.02, p = .054, d = 0.40, representing a small test-retest effect. However, as
explained further in the results later, this effect size is comparable to those from the Basic Move-
ment unit and does not account for larger gains found in the Sensors and Program Flow units.

4.3.2 Overall Gains. Next, we tested overall mean differences in gains from pre- to posttests
by examining matched samples of students across all four schools that completed both pre- and
posttests (n = 364). Results showed there was a small but statistically significant overall mean gain
of 0.57 points from pretest to posttest, t(363) = 3.62, p < .001, d = 0.18 (see Table 4).

While the overall mean difference in pre-/posttest gains found here is a relatively small effect
size (d = 0.18) compared to the medium effect size for pre-/posttest gains found in Study 1 (d =
0.57), we believe that the wider range of students introduced in this study, as well as the shorter
timeline for implementation, could have played a role in the decreased pre-/posttest gains found. It
is important to note that while Study 1 gains were observed over a full semester plus summer break,
implementation in Study 2 took place over just 5 to 7 weeks. Therefore, gains in Study 2 could be
smaller simply because this also includes students who only reached the more basic units. Follow-
up analyses were conducted to examine posttest scores by different levels of progress through
the course, to provide insight into how additional course units may be associated with different
learning gains for students in Study 2.

4.3.3 Mean Gains by Amount of Curriculum Progress. For this analysis, only students who
had completed material beyond the introductory setup lessons were included, n = 315. Of these
students, n = 142 progressed through the Basic Movement unit, n = 165 students progressed
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Fig. 4. Estimated marginal means of posttest by curriculum progress in Study 2, controlling for pretest scores.

through the Sensors unit, and n = 8 students completed the final Program Flow unit. An ANOVA
of pretest scores between these three groups found significant differences, F(2, 296) = 8.09,
p < .001. A post hoc Tukey test showed small differences between the Basic Movement and
Sensors groups (p < .05), and between the Basic Movement and Program Flow groups (p < .05).
Differences between the Sensors and Program Flow groups were not significant (p = .45).
These baseline differences motivated the use of an ANCOVA on posttest scores, to adjust for
these pre-existing differences. The ANCOVA on students’ posttest scores tested for significant
differences by the levels of progress they made through the curriculum, while controlling for
pretest scores. The ANCOVA model showed there to be significant association of progress with
posttest scores, F(2, 258) = 8.14, p < .001 (see Figure 4).

A post hoc Tukey test showed that there were significant differences of about 1 point between
posttest scores for Basic Movement and Sensors at the p < .01 level (d = .34), as well as significant
differences of about 2.4 points between Sensors and Program Flow at the p < .05 level (d = .86).
The differences of about 3.4 points between Basic Movement and Program Flow were found to be
significant at the p < .01 level (d = 1.16). Therefore, while there are significant gains observed for
groups of students who complete each additional unit of the curriculum, the largest differences
in scores were observed between groups of students who completed the Basic Movement and
Program Flow units. Furthermore, Figure 4 also shows mean pretest levels, revealing that those
who had completed only Basic Movement had made no gains, those who had completed Sensors
had made modest gains, and those who had completed Program Flow showed sizeable gains. This
pattern is to be expected, since Basic Movement involves little complexity, while Program Flow
is where computational thinking is required most intensively. Importantly, differential gains by
progress in the curriculum rules out the possibility that the gains observed are merely a result of
test-retest effects, such as pretest exposure to the structure of the assessment.

5 GENERAL DISCUSSION

In the two studies reported, we contribute to a growing body of literature around new educational
technologies aiming to provide programming instruction that teaches generalizable computational
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thinking skills. Specifically, we evaluate the association between implementation of a particular
online virtual robotics curriculum and students’ computational problem-solving abilities in both
similar and dissimilar programming contexts. Results from the analysis of mean pre- to posttest
gains in both Study 1 and Study 2 showed relatively small, yet significant, overall gains in perfor-
mance on nonrobotics computational thinking tasks. When examining these effects by the amount
of progress that students are able to make through the curriculum, however, we observed that sig-
nificantly larger learning gains occurred for groups of students who reach the more content-rich
Sensors and Program Flow units. Thus, students were able to learn generalizable skills, despite
being embedded in a context that placed strong emphasis on a particular context (i.e., robotics).

5.1 Limitations

The results of this study are limited by a number of factors. First, the lack of a random-assignment
control group and the correlational relationship between progress and gains does not address
causality. Therefore, we cannot be certain that it was in fact exposure to the curriculum that
caused the observed gains in student scores. For example, it is possible that other unobserved
factors, such as supplemental materials developed by the teacher, or other student characteristics
such as age or class attendance accounted for students’ ability to move further into the curriculum
and score higher on the posttest. In addition, the extent to which teachers who had access to and
incorporated physical robotics into the virtual curriculum is likely to have varied greatly, as school
districts had differential access to these resources, and some teachers may have been affiliated with
physical robotics teams at their schools. Indeed, it will be important for future studies of this cur-
riculum that teacher input is gathered in order to determine what additional teacher materials and
supports used or developed during implementation might also have contributed to the successful
implementation of the curriculum found here.

5.2 Practical Considerations

One issue raised by our results is that unlike in the relatively controlled environment of Study 1,
many classrooms implementing the curriculum in Study 2 were unable to consistently progress
past more fundamental units, often stopping before fully completing either the Basic Movement
or Sensors units. While this speaks to the real-world validity of our data, the phenomenon itself
suggests that additional issues will need to be addressed before widespread implementation is
feasible. Informal exploratory classroom observations throughout the implementation of Study 2
suggest a few possible hypotheses.

First, a major barrier in reaching these more conceptually rich units may be teacher content
knowledge, as well as a lack of specific pedagogical preparation to teach higher-order program-
ming concepts. Few states in the United States, including Pennsylvania, where this study was con-
ducted, require teachers to obtain specific CS certifications, and often courses like robotics that do
teach CS and programming skills fall under general technical education electives as disparate as
Business or Career, Technical, and Agricultural Education (Guzdial and Ericson 2014). For example,
many teachers implementing the curriculum in Study 2 were certified under Pennsylvania’s Tech-
nology Education certification. The 2015 Educational Testing Service’s Praxis certification exam
for Technology Education contains no computer-programming-specific questions, instead primar-
ily assessing topics like Manufacturing and Construction Technologies or user-facing computing
applications like how to operate software programs (Educational Testing Service 2015). Informal
observations showed that generally teachers in Study 2 progressed linearly though each activity,
lesson, and unit, focusing on completion of each section rather than emphasizing conceptual un-
derstanding of the particular programming concept being targeted by each lesson. Additionally,
much of the feedback provided to students struggling with more complex programming challenges
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consisted of line-by-line comparison of students’ code with example solutions that were either pre-
viously developed by the teachers or provided within the curriculum.

We hypothesize that as novice programmers themselves, teachers’ lack of understanding of the
underlying principles of programming could reduce their capacity to notice and use general struc-
tural similarities between “correct” code and student code (Catrambone 1998; Kurland et al. 1986;
Robins et al. 2010). Furthermore, teachers’ interpretation of the pedagogical requirements for am-
bitious CS instruction may also be focused on the surface level, rather than structural features
of these reform curriculum materials (Coburn 2001; Spillane 2000). This can both lead to a focus
on superficial features of the robotics programming tasks that extend the time of implementation
and inhibit teachers from moving students into more demanding and rich aspects of the curricu-
lum where they are less confident in their abilities. Existing research on teacher professional de-
velopment in problem-based learning and technology-rich contexts offers some suggestions on
how to support teachers’ implementation of reform curricula using content-based collaborative
inquiry (CBCI), where teachers collaboratively construct their own pedagogical content knowl-
edge through engaging in authentic classroom experiences (Doppelt et al. 2009; Harris 2011; Zech
2000). CBCI professional development experiences could develop teacher programming in ways
that shift instruction away from rote line-by-line programming and focuses more on the under-
lying computational thinking practices. Additional research is needed to better understand these
and other pedagogical barriers that prevent students from progressing into more complex units.

A second pattern observed in classrooms during implementation of the curriculum in Study 2
was teachers’ intermittent use of physical robotics to supplement the virtual curriculum. The
amount to which teachers incorporated physical robotics in the classroom and the reasons they
provided for using them differed; however, two main themes emerged. First, many teachers claimed
that the use of physical robotics improved students’ engagement and motivation to participate in
class. Second, they attributed increased learning gains to the additional practice of programming
skills in a similar context using physical robots. There is a growing body of literature suggesting
a relationship between teachers’ beliefs about technology, pedagogy, and content and their ability
to effectively integrate technology in their practice (Ge 2001; Kim 2013; Wang 2004). Therefore,
many teachers may continue to intersperse physical robotics activities throughout the virtual cur-
riculum as a means of re-engagement for students, which could further increase the time required
for students to progress through units containing higher-order computational concepts. The addi-
tional cost of purchasing physical robot hardware also decreases access to this type of curriculum
for underserved students. It is unclear from the data collected here what effects on student learning
were associated with the differential use of physical robotics in conjunction with the virtual cur-
riculum. While previous studies with a similar virtual robotics curriculum showed no significant
differences between learning gains for students who participated in a virtual or physical version
of the curriculum (Liu 2013), other researchers have suggested that the embodied nature of phys-
ical robotics may confer learning benefits for novices in programming and mathematics (Bruner
and Anglin 1973; Silk 2009). Further studies are needed to demonstrate if similar results exist for
differences in computational thinking gains as a function of physical or virtual representation of
this particular programming curriculum, and if there might in fact be higher levels of motivation
and engagement observed with students in hybrid physical and virtual robotics environments.

Lastly, a related hypothesis as to why many classes struggled to reach more conceptually rich
programming units is that while presenting programming material in a robotics context may
help maintain higher levels of engagement in students, curricular activities that address robotics-
specific features are often time consuming, and occur at the expense of more computationally rich
programming activities. Even in the virtual context, robotics-specific content such as sensor func-
tion and motor port location may direct students’ attention away from programming skills and
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toward more mechanical aspects of the robot’s operation, and add additional time to the curricu-
lum without necessarily increasing their exposure to computational thinking content. For example,
understanding mechanically how a touch sensor receives and transmits data to a robot may be a
less powerful introduction to key computational thinking concepts for students than understand-
ing how the data that it receives is represented as a Boolean value within a program. As with many
interdisciplinary curricula, certain lessons and sections of units may be more focused on teaching
critical aspects of one discipline over another, and may have different goals of developing stu-
dent engagement, specific content understanding, or broader skills and practices. It is important,
then, in developing and preparing interdisciplinary curricula, to select and optimize units to di-
rectly target key concepts. Concretely, in the tested curriculum, it is likely more students could
have progressed to the Program Flow unit by simplifying the number of sensors included in the
Sensors unit.

6 CONCLUSION

Currently, there is an effort within the CS community, most recently demonstrated in the an-
nouncement of the Computer Science for All initiative in the United States, to broaden the scope
of CS learning opportunities in K-12, citing both economic- and equity-based concerns from the
field (Ericson 2014; Goode 2011). Our studies suggest that curricula using new technologies such
as visual programming languages and simulated robots to teach programming in concrete con-
texts may also facilitate learning of generalizable CS skills. Further investigation into how those
affordances interact with other features of robotics learning environments, such as the incorpora-
tion of physical robots and differential levels of teacher pedagogical support, could offer additional
insight into how to develop rich, authentic CS learning environments that produce the ambitious
and dynamic learning outcomes necessary for 21st-century CS learners.

APPENDIX A: SAMPLE ASSESSMENT ITEMS

Scenario 1A:

AutoAutomobile is a company developing a system that will convert normal cars into self-driving,
“autonomous” cars.

Section 1: Navigation
When the driver puts in where they want to go, the system uses GPS to find five possible paths
from the car’s current location to the goal location. The system then uses the distance and speed
limit to calculate the expected travel time for each path.

1. Which of the following equations correctly calculates the expected travel time, based on
the distance and average speed limit along each path?

Select one:

a. Average speed limit × Total time × Path distance
b. Average speed limit ÷ Path distance
c. Path distance ÷ Average speed limit
d. Path distance × Average speed limit

2. The system now knows the expected travel time along five different paths. It must then
pick the one with the shortest travel time.

Will the following set of steps (called an algorithm) correctly identify the path with the shortest
travel time?
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• Step 1. Number the five paths 1–5.
• Step 2. Initially, mark Path #1 as the “shortest path.”
• Step 3. Then, for each Path from #2 through #5:
◦ Step 3a. Check whether that path is shorter than the existing “shortest path.”
◦ Step 3b. If it is, mark this as the new “shortest path.”
◦ Step 3c. Repeat this process for the next path, until they have all been checked.
• Step 4. Whichever path is marked the “shortest path” at the end is the shortest path.

Select one:

a. Yes, this algorithm will correctly identify the shortest path
b. No, it will always declare Path #1 to be the shortest, even if it is not
c. No, it will always declare the last path to be the shortest, even if it is not
d. The algorithm only works if the paths are already sorted in order of travel time

Scenario 2A:

A civil engineer is developing a system for a new bridge that uses automated traffic signals. The traffic
signal is designed so that the total weight of trucks and cars allowed on the bridge never exceeds a
certain amount. A weight sensor measures the weight of each car or truck BEFORE it gets onto the
bridge, and a second (simpler) sensor detects when the car or truck reaches the other side and gets off
the bridge.

3. In the previous picture, the large truck on the left is waiting to get on. The maximum weight
allowed on the bridge is 25,000 lbs. When should the light turn green?

Select one:

a. After the next car has gotten off
b. After the next two cars have gotten off
c. After the next three cars have gotten off
d. After all four cars have gotten off

4. The system should give a car the green light to get onto the bridge as soon as. . . ?

Select one:

a. There is enough space in front of the car that it will not collide with the car in front of it
b. The additional weight of the new car does not cause the total weight on the bridge to

exceed the safe maximum
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c. The weight of the new car does not exceed the maximum total weight
d. The light has been red for at least 10 seconds

APPENDIX B: SAMPLE ANALOGOUS ASSESSMENT ITEMS

Scenario 1B:

Excellent Electric designs all-electric cars. Some of these cars have new kinds of automation.

Section 1: Power Consumption
There are very few electric car charging stations, so electric cars must be careful about the amount
of electricity used in a trip. So, the computer system calculates six different paths to a destination
to find the path that will use the least electricity.

1. Which of the following calculations correctly determines the expected amount of electricity
used, based on those parameters?

Select one:

a. Average electricity used per mile × Total time × Path distance
b. Path distance ÷ Average electricity used per mile
c. Path distance × Average electricity used per mile
d. Average electricity used per mile ÷ Path distance

2. The system now knows the electricity used along each of the paths. It must then recom-
mend the route that uses the least electricity.

Will the following set of steps (called an algorithm) correctly identify the path that uses the least
electricity?

• Step 1. Number the six routes 1–6.
• Step 2. Initially, mark Path #1 as the “least electricity used.”
• Step 3. Then, for each Path from #2 through #6:
◦ Step 3a. Check whether that path’s electricity use is bigger than the existing “least elec-

tricity used.”
◦ Step 3b. If it is, mark this as the new “least electricity used.”
◦ Step 3c. Repeat this process for the next path, until they have all been checked.
• Step 4. Whichever path is marked the “least electricity used” at the end is the path that uses

the least electricity.

Select one:

a. Yes, this algorithm will correctly identify which path uses the least electricity
b. No, it will always say Path #1 uses the least electricity, even if it doesn’t
c. No, it will always declare the last path to use the least electricity, even if doesn’t
d. No, the algorithm will find the path the uses the MOST electricity

Scenario 2B:

A popular restaurant has long lines around lunchtime. In order to be fair, the manager of the restaurant
starts a “first come, first served” policy where groups of diners are served in the order they arrive.

Seats can be moved around, so there is no need to wait for larger or smaller tables. When a group is
done eating, they pay and leave together, although groups do not always leave in the same order they
arrived.

ACM Transactions on Computing Education, Vol. 18, No. 1, Article 4. Publication date: October 2017.



4:18 E. B. Witherspoon et al.

3. The restaurant (shown previously) has room for 20 people. The line of groups waiting
outside is shown, along with the number of people in each group, and the order that the
parties are lined up in. There are currently 17 people in the restaurant, in groups as shown.
When should the first group in line be let in?

Select one:

a. As soon as the next group leaves the restaurant
b. As soon as the next two groups leave the restaurant
c. After groups totaling three or more people have left
d. After all 17 people inside the restaurant leave

4. In general, a restaurant should let the next group in as soon as. . . ?

Select one:

a. There is enough space in the doorway for the next group to stand in it
b. The additional people in the new group do not cause the total number of people in the

restaurant to exceed the maximum allowed
c. The size of the new group is less than the allowed maximum
d. The group has been in line for at least 15 minutes
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