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Abstract

Background: Robot-math is a term used to describe mathematics instruction centered on engineering, particularly
robotics. This type of instruction seeks first to make the mathematics skills useful for robotics-centered challenges,
and then to help students extend (transfer) those skills. A robot-math intervention was designed to target the
proportional reasoning skills of sixth- through eighth-graders. Proportional reasoning lays the foundation for further
progress within mathematics. It is also necessary for success in a number of other domains (engineering, science,
etc.). Furthermore, proportional reasoning is a life skill that helps with daily decision making, planning, etc. However,
it is a skill that is complex and often difficult for students. Previous attempts to design similar robot-math activities
have struggled to focus students’ attention on key mathematics concepts (in complex engineering domains), and
to motivate students to use the math properly. The current intervention was designed with these challenges in
mind. This intervention centers on a computer-based 3D game called Expedition Atlantis. It employs a game design
that focuses student attention on a specific proportional reasoning task: students calculate correct quantities of
wheel rotations to move the robot to desired locations. The software also offers individualized tutorials. Whole-class
discussions around daily word problems promote further application of proportional reasoning outside the robot
programming context. The 1-week intervention was implemented by three teachers at different schools with
varying levels of ability among students.

Results: Overall, within-participant comparisons revealed that the intervention was successful in improving the
number of correct responses, the number of problems attempted, the proportions of correct responses, students’
interest in robotics, and students’ valuing of mathematics within robotics from pre- to post-test. Further analysis of
teachers revealed that the two class sections of special education benefited most. Consideration was given to the
qualities of the implementation that might have led to these enhancements.

Conclusions: The success of this intervention suggests that robot-math activities might be successful when focused
on a few target skills and when designed with individualized tutorials/prompts that motivate proper skills. Further
investigations of student and implementation characteristics would help to refine these interventions further.
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Findings
Background
Robotics is being taught in over 35,000 formal and infor-
mal education settings in the USA (FIRST 2013; REC
2013) and a number of educators and researchers have
highlighted the potential use of robotics lessons to rein-
force students’ mathematical understanding (Benitti 2012;
Vollstedt et al. 2007). One popular premise for doing so is
* Correspondence: alfieri@pitt.edu
1Learning Research and Development Center, University of Pittsburgh, 3939
O’Hara Street, Pittsburgh, PA 15260, USA
Full list of author information is available at the end of the article

© 2015 Alfieri et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
that students are more likely to recognize the math as
relevant because of its direct, applicable utility to a con-
crete and contextualized task (Doppelt et al. 2008; Mubin
et al. 2013). This instructional approach of teaching math-
ematics within the context of robotics is commonly re-
ferred to as robot math. Robot math’s cross-disciplinary
integration of engineering, technology, and mathematics
highlights for students how these different disciplines ne-
cessitate and facilitate each other. Such instruction stands
in contrast to more traditional mathematics classes, which
might prompt mathematical reasoning only for the sake
of understanding numerical relationships, and merely
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Table 1 Principles for MEA design

Principle Explanation

Reality principle Students can make sense of the situation based
on their experience.

Model construction The task creates a need for a mental model to
be constructed, modified, extended, or refined.

Model documentation Students are required to explicitly reveal how
they are thinking about the problem.

Self-evaluation The problem statement includes rubrics
enabling students to judge for themselves
whether their solution is acceptable.

Generalizable model The model should not only work on the specific
problem but should be sharable and usable in
other situations.

Simple prototype The problem should be as simple as possible
given the instructional goals.
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describe it as occurring in a context. Although the current
paper focuses exclusively on robot math, such integrated
activity-based instructional approaches might be appro-
priate for STEM (science, technology, engineering, and
math) education more broadly as the lines between these
disciplines increasingly disappear.
When engaged in a robotics activity, students might

first encounter a mathematical problem within a con-
crete context such as movement programming, and le-
verage that context to begin sense-making at a higher
level both faster and sooner. Through successful early
encounters with problems of a mathematical nature,
students could gain both experience and confidence in
using robot-contextualized math (those concepts/solutions
common to robotics) within that single, well-defined
context. They might then extend that understanding to
mathematics more generally (by increasing the level of
abstraction of their mental models) and consequently,
see how these solutions also connect to everyday math-
related situations (generalize their solution strategies
and/or models in order to transfer them to other situa-
tions; e.g., math classes, science classes, or even every-
day life).
However, successful mathematics learning can be dif-

ficult for students to achieve through robotics. Investi-
gations of educational robotics (e.g., Silk and Schunn
2008) have revealed that learners encounter difficulties
learning mathematics when too many topics are incor-
porated into a single lesson. Moreover, subsequent
studies (e.g., Silk et al. 2010; Silk 2011) found that (a)
the majority of teams in a middle-school robotics com-
petition “guessed and checked” their ways through the
programming portion of the task rather than use math-
ematics, and (b) the success of teams that did attempt
to use mathematical solutions was highly dependent
upon the way in which the mathematics were integra-
ted into the team’s overall problem-solving process.
Finally, extended investigations of mathematics in ro-
botics sometimes suffered from low engagement and
thus no interest development in robotics or mathemat-
ics, especially when the same basic robotics task needed
to be revisited many times to deepen the mathematical
solution.
Robotics lessons designed to reinforce mathematical

understanding (i.e., robot math instructional methods)
could therefore benefit from the following points of re-
finement: (1) narrow the number/variety of mathema-
tical concepts included within the lesson, (2) actively
discourage the guess-and-check method, (3) improve
the use of mathematical solutions, and (4) provide a ro-
botics context that is sufficiently varied to maintain
engagement. The current study investigates whether a
robot programming game using those strategies can
produce better student outcomes.
In particular, we explore whether a robot program-
ming game is a platform that can facilitate robot math
by affording teachers with the opportunity to capture
students’ attention and engage them in an activity that is
enjoyable while also highlighting for them the utility of
math both within the game and more generally. The re-
search questions included (1) whether this approach is
effective in achieving math learning gains, and (2) whe-
ther the approach also raises students’ interests in robo-
tics, mathematics, or their awareness of the importance
of mathematics in robotics. The intervention was de-
signed to be implemented within the kind of classroom
typical of robotics education settings: elective technology
classes. And so, also of interest was the fidelity of teachers’
implementation and whether gains would be found in this
elective type of classroom environment.

Supporting at-risk classrooms and teachers not certified in
mathematics
Implementing robotics activities in elective technology
classes to facilitate mathematics learning can be challen-
ging because teachers in those classes are rarely certified
in mathematics instruction. Therefore, we designed activ-
ities that required little support from teachers by including
the basic mathematics strategies in the instructions to stu-
dents within the game. Furthermore, to allow for differen-
tiated support for students of varying mathematics ability,
we developed the robot math activities using the model
eliciting activity (MEA) design principles (see Table 1;
Lesh et al. 2000; Reid and Floyd 2007). Activities designed
with these principles would challenge more advanced stu-
dents while remaining approachable to weaker students.
An additional benefit of robot math is its potential ap-

peal as an “alternative” method for classrooms of learners
who are considered at-risk of not learning the mathemat-
ics skills essential for testing and success using main-
stream curriculum. For example, students grouped under
the umbrella of special education might struggle with
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schoolwork for a variety of reasons (e.g., poor self-
efficacy, poor reading ability, or attention disorders;
Hampton and Mason 2003; Pastor and Reuben 2008;
Zimmerman and Martinez-Pons 1990) and sometimes
non-traditional methods or multi-modal methods of in-
struction can be more effective (Kroesbergen and Van
Luit 2003; Moreno and Mayer 2007). Because of the
potential for robot math to engage students in a genu-
inely motivating way by conveying useful mathematics
concepts (grounded within robotics instead of de-
scribed abstractly), these at-risk classrooms might have
the most to gain from such activities. The engagement
of otherwise at-risk students paired with differentiated
student supports within the game (hints, tutorials, etc.)
could maximize the potential for student success. Fur-
thermore, the varying levels of ability within such class-
rooms can be handled by the differentiated supports
within the game, which include difficulty settings that
can be adjusted to increase/decrease the complexity of
calculations (e.g., the inclusion of decimal numbers).

The challenges of developing effective activities
While there are many salient mathematics concepts that
can be found within robotics activities typically experi-
enced at the middle and high school levels, we focused
on proportional reasoning. Proportional reasoning is a
pervasive concept in mathematics (National Research
Council 2001) that involves scale, rate, and conversion
of units and has been identified as “the capstone of chil-
dren’s elementary arithmetic and the cornerstone of all
that is to follow” (Lesh et al. 1988). Proportional reason-
ing is also pervasive in robotics movement planning, as
wheels and limbs typically move distances and angles
that are proportional to motor commands.
In Expedition Atlantis, we targeted this single key ma-

thematical concept for intense intervention and used
principles of MEAs to guide our material design (see
Table 1). Prior efforts with this approach had already re-
vealed design issues that we attempted to avoid or miti-
gate. For example, one such unit, robot synchronized
dancing (RSD), challenged students to program two ro-
bots with different-sized wheels and wheel bases in order
to allow them to move (dance) in synchrony. A unique
sequence of dance movements programmed into one
robot had to be adapted to synchronize a second (differ-
ently sized) robot. This overall task was divided into sub-
tasks to scaffold the demands of the challenge (Apedoe
et al. 2008): (1) synchronizing the distance traveled, (2)
synchronizing robots’ speeds, and (3) synchronizing their
turns. As students worked, they were asked to create
and revise a general technique that would allow for the
synchronization of more robots of different sizes (i.e., a
generalizable model of the solution). Additionally, stu-
dents solved math-focused abstraction bridges (Brown
and Clement 1989) that prompted students to solve robot
math word problems. These problems were initially
analogous to the calculations of distance and speed re-
quired for the challenge, but progressed toward everyday
proportional reasoning scenarios to prompt students to
generalize the proportional reasoning skills that they
had developed within the robot challenge to more tra-
ditional situations, thereby developing a more general
understanding.
The first version of RSD fell short in implementation

because students spent too much time on developing
the base dance. Instead of tackling the mathematics in-
volved in the challenge, initial lessons had to teach the
necessary programming language commands, and stu-
dents spent too much time working on the esthetics of
the dance. Initial revisions to the module mitigated both
issues by providing the base dance to students, but en-
countered another layer of implementation challenges
revolving around the inaccuracies and inconsistency of
robotic systems in physical operation. In particular, the
real-world noisiness of physical robotics created a dis-
traction: the teacher needed to facilitate additional dis-
cussions about why averaging across multiple trials were
required, why precise measurement was necessary, etc.
(Silk 2011).
As a result of these challenges, the current interven-

tion uses a game-like robot simulator called Expedition
Atlantis that operates entirely in a “virtual world,” thus
eliminating the mathematical challenges of stochastic
performance and measurement error. It also limits the
scope of programming to the selection of the most ma-
thematically vital parameter: how many wheel rotations
the robot needs to move or turn to achieve the desired
movement outcome. These differences reduce the bur-
den on teachers and students to first learn programming
before learning the math, as well as highlight propor-
tional reasoning without requiring attention to statistics
and measurement concepts.
Furthermore, to reduce the chances of guess-and-check

methods (what students do when they are avoiding the
mathematics), Expedition Atlantis includes automatic
tutorial prompts after the player repeatedly answers in-
correctly. With these built-in tutorials and prompts for
students to develop their skills independently, teachers
are not expected to do much more than guide discus-
sions of the solutions to accompanying word problems
(abstraction bridges). The abstraction bridges written
for the RSD intervention (Silk 2011) were adapted to
the challenges within Expedition Atlantis. The content of
the abstraction bridge problems initially center around
the Expedition Atlantis game, then gradually shift to
other contexts. As before, the intent is for students
to develop proportional reasoning skills by first creat-
ing models of the proportional relationships within the
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game, then extending those models to everyday situa-
tions over time.
On the basis of prior results and the additional issues

addressed in Expedition Atlantis, we hypothesized that
we would find increases in proportional reasoning test
scores from pre- to post-test, as well as increases in
measures of students’ interests and values pertaining to
mathematics, robotics, and the use of mathematics in
robotics.

Methods
Participants
The intervention was implemented by three teachers at
different schools within urban/suburban districts in the
northeastern USA; 116 students participated. Teachers
were financially compensated for their time, which in-
cluded a 2-h professional development session before
implementation was scheduled to begin. Teachers at all
three schools implemented the intervention in two of
their class sections ranging from grade 6 through 8.
Table 2 lists the numbers of students and their mathem-
atics levels by section.
Schools were selected in order to explore the impact

of the intervention across different classroom contexts.
Two of the schools were public, one private. Both class
sections at school A (the first public school) were la-
beled as special education. These students were consid-
ered to be at-risk of not passing state standardized tests.
At school C (the second public school), one of the class
sections was labeled as accelerated and the other section
was at a standard level. Because school B (the private
school) included a mix of grade levels (6 through 8)
within its sections, ability levels varied within each sec-
tion but all were around average for the students’ re-
spective grade levels. School B was in an urban district
as compared to the more suburban settings of the
public schools (A and C). The teachers at schools A
and C were not certified in mathematics but the teacher
at school B was certified in secondary (grades 7–12)
mathematics.
Table 2 Sample of students across three locations

Context 6th graders 7th graders 8th graders

School A (public)

Special education section 1 15

Special education section 2 15

School B (private)

Mixed section 1 10 7 6

Mixed section 2 8 8 5

School C (public)

Average section 22

Accelerated section 20
At the end of a pre-test, students were asked if/when
they would complete an algebra course and to rate their
levels of experience with robots, among other questions
on a survey of prior experience. Survey responses indi-
cated that the majority of students (n = 66) planned to
take a full algebra course in the eighth grade (including
all 11 eighth-grade students, who were already doing
so). The 20 students within the accelerated sixth-grade
math class would take an algebra course in seventh-
grade and the 30 students within the special education
classes would take such a course in ninth grade. The
majority of students (n = 99) had little or no experience
working with robots. Only four students reported hav-
ing extensive experience with robots and removing
these students from analyses did not significantly alter
the results.

Materials
Curriculum At the center of the intervention was an
interactive simulator game (Expedition Atlantis) requir-
ing students to utilize their proportional reasoning skills
in order to program a robot to navigate through a 3D
aquatic environment. Figure 1 provides an overview of
the entire game (its display, example problems from
each chapter, etc.).
Students interact with the game by filling in para-

meters to control the robot’s motors during a series of
maneuvers. These parameters are expressed in units in-
ternal to the robot, such as motor/wheel rotations. How-
ever, each parameter exposed in this way is proportional
to a tangible in-game goal quantity, such as distance the
robot travels. Students are given a goal in each level of
the game that (implicitly) requires them to relate the
two. For instance, because wheel rotations are propor-
tional to the distance the robot travels, one level tasks
students with making the robot move a specified dis-
tance by determining the corresponding number of
wheel rotations to make it do so. A correct answer ad-
vances the student in the story, while an incorrect answer
prompts the software to begin offering progressively
stronger hints, eventually directing students through an
additional series of activities that use a building-up ap-
proach to illustrate the physical relationship between
the number of wheel rotations and the distance traveled,
using the values from the student’s current problem.
The game contains five substantively different scenar-

ios, spread over four chapters, each raising an additional
complication for the robot. The first level involves only
forward movement; the second introduces turning; the
third scenario combines moving and turning; the fourth
introduces physical changes to the robot that alter the
underlying rate values (e.g., a larger wheel goes farther
in the same number of rotations); and the fifth sce-
nario requires students to plot out their own movement



Figure 1 Chapters within Expedition Atlantis.
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sequences in order to navigate a maze-like environment,
and subsequently solve the individual movement-value
problems that the sequence generates. See Figure 1 for an-
other description of individual chapters, explanations of
the display, and example problems students had to solve.
When used in a classroom setting, teachers could le-

verage each new scenario as an opportunity to examine,
discuss, and reason about the nature of the proportional
relationships and how best to describe and apply them
in the game context.
Each school was provided with access to the program
for installation on student computers. In addition to a 2-h
professional development session prior to implementa-
tion, teachers received binders that explained the purpose
of the game and its accompanying activities.
Each day’s activities were accompanied by worksheets

that prompted students to complete proportional rea-
soning practice problems called Abstraction Bridges.
Our intention was to have these problems help students
to generalize the mathematical skills and knowledge
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gained within the game. On the first day, students com-
pleted problems that were very similar to calculations
needed within the game (e.g., moving and turning the
robot; near transfer). On each successive day, problems
on the worksheets became increasingly dissimilar in
theme; then in form, from the calculations within the
game until on the last day(s), problems were completely
unrelated to robot movement (e.g., plow sizing, paint
mixing, etc.; i.e., far transfer). See Table 3 for examples
of both near and far transfer practice problems.
The game allowed teachers to decide which difficulty

levels were most appropriate for students. This setting
influenced the difficulty of the calculations (e.g., the
presence or absence of decimal numbers), but not the
order of robotics topics (e.g., straight movement was al-
ways followed by turning). Similarly, difficulty settings
did eventually influence areas directly relevant to the
target topic of proportional reasoning (e.g., the inclusion
of non-unit base rates; 2 rotations = 3 m) at higher set-
tings. Figure 1 provides prompts at different difficulty
levels for comparison. Teachers initially set all students’
difficulty to a common level based on the mathematics
level of the class, and then directed individual students
to increase or decrease their individual difficulty levels
based on their rate of progress through the game.

Proportional reasoning test There were two versions
of the test that were administered roughly equally as ei-
ther pre- or post-tests within classrooms (adapted from
Silk 2011; Weaver and Junker 2004). The two versions
were comparable in content (i.e., mostly far transfer, pro-
portional reasoning problems some of which could be
solved without complex mathematical calculations) and
contained the same number of question prompts. See
Table 3 Abstraction bridges

When encountered Name of problem Problem

Following day 1 Robot movements Your robot moves 10 m in 4

How many wheel rotations do

Following day 2 A new robot You just purchased a new rob
the robot, it turns 5°.

How much will your robot turn

Following day 3 Going on a trip You are traveling to visit a frie
fill up. You will use 54 gal of

How much will you need to sp

Following day 4 Paint mixing When we arrived at the robo
custom colors. A gallon of red
color that we want.

If the job is going to take 24 g

Density of tire spikes We have to travel across ice w
wheel doesn’t slide. Our ice t
tires have more spikes but are

If each type moves 12 m, whic
Table 4 for example questions. Students received one
version as a pre-test and the other as a post-test. Prior
work using this assessment failed to find reliable pre/
post improvements with similar populations in several
control groups and in some of the robotics-related in-
terventions (Silk 2011). Therefore, it is unlikely that
any gains from pre to post in this study would simply
be the result of increased familiarity with the questions,
a Hawthorne effect (i.e., gains simply from experiencing
novel instructional approaches), or typical ongoing math-
ematics instruction during this time period. Because the
current study could not investigate students’ transfer of
potentially gained math skills in other subjects’ classes, the
questions on pre- and post-tests were chosen to be out-
side of robotics and in contexts more like everyday life.

Prior experience survey At pre-test, students were also
asked to answer questions about their grade level,
algebra-taking plans, and familiarity with robots.

Motivation survey At both testing times, students rated
their personal interests in and values of mathematics and
robotics on a five-point scale from NO! (strongly disagree)
to YES! (strongly agree). Students rated statements about
mathematics interest (four items; Cronbach’s alpha: pre =
.74; post = .82), robotics interest (four items; Cronbach’s
alpha: pre = .73; post = .76), and the value of math in ro-
botics (four items; Cronbach’s alpha: pre = .66; post = .80).
In prior work using these scales (for a summary, see Silk
2011), robotics interventions either tended to increase
motivation or proportional reasoning but not both. Again,
that a number of prior robotics interventions showed no
pre/post gains on these measures rules out gains from
simple test-retest effects or Hawthorne effects.
wheel rotations.

es it take to move 30 m?

ot! The instructions say that for every 8 motor rotations programmed in

if it uses 56 motor rotations?

nd in another state. Your car has an 18 gal gas tank and costs $48.00 to
gasoline in your travels.

end on gasoline?

t garage, we were informed that we could customize our robots with
, 2 gal of white, and a gallon of blue paint will give us one particular

al of paint total, how many gallons of each color will we need?

ith our ice tires. Ice tires have little spikes that dig into the ice so the
ires are 6 m but Goodtire 3000 makes much smaller ice tires. Our ice
less dense.

h one will create more spike marks on the path?



Table 4 Example questions from the proportional reasoning test

Version 1 Version 2

Question Question

1) There are 36 poker chips, 12 blue (B) and 24 red (R). 6) Frances has an enlarging machine that can enlarge or reduce
a photograph to any size while keeping the same shape. If an
original photograph is 2 in wide by 2.4 in long and Frances
wants to enlarge it to be 5 in wide, how long will it be?

Arrangement 1 Arrangement 2

4B 4B 4B 3B 3B 3B 3B

8R 8R 8R 6R 6R 6R 6R

What changed between the first and second arrangements?

What did not change?

Show another arrangement of the poker chips that preserves the same relationship.

5) John is 15 years old. John’s father is now three times as old as John is. 11) It takes Vanessa 9 h to paint 15 chairs. How long will it take
her to paint 20 chairs?

How old is John’s father now?

When John is 20, how old will his father be?

14) The ratio of 5 to 4 is the same as: 13) Which statement is correct?

a) The ratio of 6 to 5 a) 2/5 = 1/4 = 3/6

b) The ratio of 5/4 to 1 b) 2/5 = 4/25 = 16/625

c) The ratio of 10 to 8 c) 2/5 = 6/15 = 4/10

d) b and c
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Design and procedure
Pre- and post-tests were administered by the teachers in
the presence of the experimenter on the days immedi-
ately preceding and following the roughly 5-day inter-
vention. An experimenter was present in all classrooms
throughout implementation to ensure the materials were
being implemented, assess student reactions, and handle
technological obstacles (e.g., game freezing). To maintain
the authenticity of the implementation, the experimenter
imposed few restrictions or recommendations. Teachers
led abstraction bridge discussions as they would in the
absence of the experimenter and students worked indi-
vidually or in pairs as they traditionally would. The ex-
perimenter met with the teacher before and/or after
each class to discuss the day’s activities, the subsequent
day’s activities, and any other concerns that the teacher
had. However, teachers raised few questions as to how
to proceed with the intervention. Most discussions with
teachers centered around students’ progress and promp-
ted feedback from teachers about the intervention more
generally. Whereas stricter guidance would have increased
the amount of experimental control, it potentially could
have made the class seem unusual to students and conse-
quently suspect. For these reasons, it seemed best for this
first study of the unit’s implementation to allow the
variations inherent to different teaching styles and
classroom environments, which would further allow us
to explore preliminarily which variations were most
effective.
Before the first day of implementation, students were

pre-tested. The intervention was then implemented across
subsequent days; students engaged in game play and then
received the day’s practice problems to complete either at
the end of class or for homework. Except for the first day
of game play in which students immediately began with
game activities, all other days began with the teacher
reviewing the practice problems (abstraction bridges)
with the class in the form of a class discussion and
modeling (either by classmates or the teacher) of the
correct solution(s). Reviewing solutions to a problem
required about 5 to 10 min. After the review session,
game play resumed at whichever chapter the student
had left off. Following the intervention, post-tests
were administered.
It warrants noting that the current investigation was

not designed to directly compare outcomes between
schools. Instead, it was designed to explore the variety of
ways that teachers implemented the intervention and
the effects of that implementation on learning outcomes.
That is, this investigation examines effects within three
purposely-diverse sites as case studies. The examination
of these three implementations provided insight into the
efficacy of the teacher’s guide, the fidelity of implemen-
tation, and the efficacy of the intervention following that
implementation.

Results and discussion
Pre- and post-tests were scored by the experimenter,
providing partial points for correct reasoning even if cal-
culated incorrectly (e.g., rounding error). Two test scores
were created: raw scores of the number of correct re-
sponses (out of 17), and proportions of answers correct
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out of the number attempted by each student because
students sometimes skipped questions. Changes in stu-
dent interest in mathematics and robotics, and recognized
value of math in robotics were also scored to investigate
whether participation in the intervention changed stu-
dents’ opinions.
The proportional gains from pre- to post-test were

subjected to an ANCOVA that included ability level as a
fixed effect and pre-test number correct and pre-test
number attempted as covariates. Because ability level, lo-
cation/teacher, and grade level were all highly contingent
(contingency coefficients of 0.8, p < .001), we chose to
focus analyses only on ability levels. The ANCOVA’s
corrected model for proportional gains was significant,
F(4, 100) = 9.07, p < .001 with a marginal effect of class
category, F(2, 100) = 2.92, p = .06. However, there still
seemed to be reason to suspect that there were diffe-
rences in implementation at different locations - par-
ticularly when comparing students of traditional ability
levels. Therefore, the data were analyzed with pre/post
paired-sample t-tests, first including all locations, and
then, follow-up analyses for each location separately.
This was done for both sum scores and the proportions
correct, as well as mathematics-, robotics-, and value-
related self-ratingsa. Effect sizes to capture pre/post
change were then calculated by using groups’ pre- and
post-test measures’ means, standard deviations, and
correlations between measures (in order to adjust the
effect-size for a within-subjects design).

All three schools
Overall, we found that across locations/teachers, the
intervention improved scores on proportional reasoning
(both sum scores and proportions correct). See Table 5
for a presentation of all measures, and Figure 2 for effect
sizes. We also see that there is a marginal (p = .061) in-
crease in the number of prompts attempted by students
from pre- to post-test. Thus, the large change in overall
number correct reflects changes in both number
attempted and accuracy within those attempted.
We also see significant increases in student robotics inter-

est and students’ values of mathematics for use in robotics
from pre- to post-test. There was not a significant increase
in students’ general ratings of mathematics interest, again
ruling out a Hawthorne effect in which students broadly
show change as a result of exposure to a new environment.
To test whether the mathematical gains depended

upon initial attitudes toward mathematics or robotics,
correlations were computed between pre-test interest or
values ratings (for mathematics, robotics, mathematics
in robotics, or the combined average of all three) and
gains in proportional reasoning. None of these correla-
tions was statistically significant (Pearson r = −.09, −.11,
.03, and −.09, respectively).
Individual schools
The patterns of results across our three locations indi-
cated some variability in effects but generally, patterns
were consistent. As can be seen in Table 5, marginal or
non-significant differences were found between pre- and
post-test scores at the schools B and C but the special
education classrooms at school A did show gains large
enough to be statistically significant on their own. On
average, classes at all locations increased in their inter-
ests in robotics, and classes at two of the three locations
increased in their value of mathematics for use in robot-
ics. After only several days of game play, these are con-
siderable gains. Furthermore, every setting saw gains on
at least two measures.

Observations of classroom environments
All three teachers maintained high levels of implementa-
tion fidelity across days. None of the three teachers devi-
ated from the pace or purposes of the materials as they
had been prepared. Students worked largely independ-
ently at individual computers at schools A and C but
paired up to play the game at school B. Across all three
locations, few if any students asked for help in playing
the game. Teachers and the researcher circled to tackle
more technical problems (computers freeze, graphics mal-
function, etc.), which were the few times students re-
quested assistance. Teachers had little to do but walk
around and monitor student progress while students
played the game. Their part in this intervention was mainly
to lead discussions of the abstraction bridge problems.
In this capacity, the three teachers behaved somewhat

differently. As the abstraction bridge discussions were
unscripted, teachers led students through solution stra-
tegies as they thought appropriate.
Discussions of the abstraction bridges at schools B and

C included presentations of multiple solution strategies
(e.g., the base rate or segment strategy, the T chart strat-
egy described below, or the scale factor strategy de-
scribed belowb) by students who displayed and explained
their reasoning behind the solution. Teacher B (i.e., at
school B) decided who would present her/his strategy
after asking students what their answers were. A first
student would provide an answer and others would
agree or disagree by a show of hands. The teacher would
then typically ask the first (or multiple students) to show
how (s)he solved the problem. Consequently, all strat-
egies led to similar answers (some rounding variations)
and all were generally correct - as selected by the teacher.
In comparison, teacher C chose students either because
they volunteered or because he wanted to challenge spe-
cific students. This led to student presentations of both
correct and incorrect strategies and answers, which the
teacher then labeled as correct or incorrect after their
presentation. Consequently, more students presented



Table 5 Pre/post gains in proportional reasoning and interests (statistically significant gains in italic)

Measure Pre-test Post-test

M SD M SD t statement

Sum score 6.74 3.50 7.97 3.64 t(104) = 4.20, p < .00

School A 6.14 3.00 9.71 2.09 t(27) = 6.80, p < .00

School B 8.89 3.62 9.50 3.73 t(37) = 1.31, p = .20

School C 5.08 2.59 5.23 2.70 t(38) = 0.41, p = .69

Proportion correct .56 .22 .62 .21 t(104) = 2.85, p < .01

School A .52 .19 .66 .15 t(27) = 3.83, p < .01

School B .68 .20 .68 .18 t(37) = 0.00, p = 1.0

School C .46 .20 .53 .25 t(38) = 1.44, p = .16

Prompts attempted 12.27 4.08 13.08 4.38 t(104) = 1.90, p = .06

School A 11.93 3.62 15.00 2.98 t(27) = 4.57, p < .00

School B 13.37 4.09 14.11 3.93 t(37) = 1.37, p = .18

School C 11.44 4.24 10.69 4.65 t(38) = −0.91, p = .37

Student interest in mathematics 2.20 0.96 2.21 1.09 t(104) = 0.16, p = .87

School A 1.97 1.05 2.06 1.20 t(27) = 0.86, p = .41

School B 2.17 0.77 2.29 0.94 t(37) = 0.96, p = .35

School C 2.36 1.03 2.24 1.14 t(38) = −0.93, p = .36

Student interest in robotics 2.48 0.74 2.84 0.82 t(104) = 4.84, p < .00

School A 2.29 0.58 2.57 0.78 t(27) = 2.40, p = .02

School B 2.63 0.80 2.96 0.72 t(37) = 2.96, p = .01

School C 2.48 0.75 2.90 0.91 t(38) = 3.00, p < .01

Student values math in robotics 2.46 0.64 2.81 0.83 t(104) = 4.29, p < .00

School A 2.28 0.68 2.52 0.81 t(27) = 1.50, p = .15

School B 2.49 0.65 2.95 0.72 t(37) = 3.55, p < .01

School C 2.53 0.61 2.83 0.91 t(38) = 2.24, p = .03
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different strategies at school C (both correct and incor-
rect) than did students at school B. Furthermore, the time
spent on discussions of these problems were generally lon-
ger at school C than at the other schools (precise time
measurements unavailable) because a number of incorrect
responses needed to be explained before a correct solution
was presented. This also slightly decreased the amount of
time spent playing the game.
One of the strategies presented at school C included

an approach not seen at the other two schools: the T
chart. The T chart is a method of increasing two num-
bers incrementally through addition on both sides (e.g.,
doubling 18 gallons and $63.00 until $63.00 is close to
$192.50 in order to figure out how many gallons of gas
were purchased for $192.50). Answers following from
this strategy are approximate at best. In comparison to
other solution strategies, this approach seemed ineffi-
cient but was observed in both the traditional and accel-
erated classrooms at school C.
Discussions at school A surrounded the use of only a

single strategy - scale factor. As at the other schools,
students here were asked to present their solutions ei-
ther because they volunteered or because the teacher en-
couraged a student personally. On the first day of
abstraction bridge discussions, a student identified and
explained her scale factor strategy and the other students
were quick to recognize it from a previous class. Subse-
quently, all students adapted the same scale factor strategy
- or a closely similar variant. This allowed discussions to
focus on (1) the relationships between numbers (e.g., la-
bels such as meters and rotations and the relationship be-
tween number of rotations and distance traveled in
meters), (2) what each number represented at each stage
of the solution (e.g., the distance per single rotation,
the cost per gallon of gas, etc. - numbers calculated in
the process of reaching the final answer), and (3) the
details of working through this mathematical procedure
(e.g., rounding, multiplying without a calculator, etc.).
These three components were present in all discussions
at school A but were less commonly present in discus-
sions at the other two schools. Later problems elicited
discussions as to how to apply the scale factor strategy



Figure 2 The effect sizes for skill development and interest.
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to these more complex “life math” problems - as re-
ferred to by teacher A.
Thus, the particular gains observed in school A might

not be due to student characteristics (special education)
alone, but also to teacher A’s organization of abstraction
bridge discussions. It may be that students benefit most
when the number of strategies presented to solve prob-
lems is kept low and when only correct strategies are
highlighted. Furthermore, teacher A elicited explanations
of these strategies in particular ways: asking students what
each number represents, the purpose of each mathematic
calculation, etc. However, given the various differences be-
tween school contexts, no strong inferences can be made
about the effects of the teacher strategies.

Conclusions
Overall, the 1-week intervention increased students’ pro-
portional reasoning skills from pre- to post-test (particu-
larly at school A), as well as their interest in robotics (all
three schools) and their value of mathematics for use
within robotics (particularly at schools B and C) as in-
ferred from within-participant comparisons. In past stud-
ies using physical robots without the additional structures
provided by the Expedition Atlantis game, limited math-
ematics gain was generally found. In the one prior case in
which significant gains were found using the physical ro-
bots, the students were from an advanced private school
and the instructor was from the research team, and there-
fore able to provide many complex supports for the
students that would be difficult for traditional technology
educators to provide effectively. Finally, the prior case
with mathematics gains did not show gains in interest in
mathematics or robotics (Silk 2011). Thus, the current
outcomes were generally more positive, especially given
the implementation in challenging contexts without trad-
itional technology instructors.
We believe these improved outcomes to be the result of

four major features of the intervention. The first feature
was a focus on a single mathematics topic: proportional
reasoning. This allowed students to concentrate on this
skill instead of attempting to learn all of the mathematics
potentially involved within robotics. The second was a
simplification of how the robot needed to be programmed.
Instead of requiring students to learn the syntax of pro-
gramming, they could directly enter their calculations for
the number of wheel rotations required for a given destin-
ation. The third feature was a curbing of students’ propen-
sity for guess-and-check approaches. After a few incorrect
guesses, students’ attention was drawn to particular pieces
of information on screen (e.g., the distance for a given
number of rotations) needed to solve the calculation cor-
rectly. After a few more incorrect guesses, students were
assisted by a pop-up tutorial within the game that demon-
strated how to think about the problem, how to imagine
the distances, and how to calculate the number of rota-
tions needed. Although most students who encountered
the tutorial were grateful for the personal assistance, some
students were frustrated because they had reached the
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tutorial when their guess-and-check approaches were in-
sufficient. Nevertheless, these students were observed to
be less likely to guess in the future. Lastly, the fourth fea-
ture was the inclusion of abstraction bridge word prob-
lems that facilitated a generalized application of
proportional reasoning to other domains, thereby prepar-
ing students to use this reasoning for analogous problems
and/or in daily life. Thus, these initial findings would pre-
dict that robot-math activities designed with similar fea-
tures would also likely be successful.
Again, the findings reported here are case studies of

three locations with conclusions drawn from within-
participant comparisons. Further investigations are ne-
cessary to tease apart these features of the intervention -
perhaps including a comparison to a meaningful baseline
control group (no instruction, practice only, traditional
instruction, etc.).

Supporting teachers not certified in mathematics and
at-risk classrooms
When schools were examined individually, the greatest
gains were found at school A where both class sections
had been classified as special education (at-risk) and the
teacher was not certified in mathematics. We had hoped
of course that our intervention would improve scores of
all students but were particularly interested in its effects
within special education classrooms because many of
these students are considered to be at-risk of failing
benchmark tests in mathematics. We hypothesized that
this “alternative” method of teaching proportional rea-
soning may be successful because of its non-traditional,
multi-modal approach that makes the math skills ac-
quired transparently useful (within the game immedi-
ately, and later within daily situations as discovered in
discussions of abstraction bridges; Kroesbergen and Van
Luit 2003; Moreno and Mayer 2007). Furthermore, the
student supports present within the game (highlighting
of important information followed by tutorials) could ef-
fectively scaffold the calculations to make them access-
ible to students at varying levels of ability. And indeed,
students at school A benefited considerably from the
intervention.
However, these initial findings require further investi-

gation as to the influences of student and/or teacher
characteristics. It is difficult to distinguish the two with
the current sample because only teacher A was responsi-
ble for at-risk classes. Moreover, teacher A was exceptional
in fostering students’ understanding of the abstraction
bridges. After the first student who presented a solution
reminded her classmates of the scale factor strategy by
using it successfully within the problem, all students
adapted that strategy to meet the demands of subsequent
problems. The scale factor solution strategy had been in-
troduced in a previous class and so all students were
familiar with it. This allowed teacher A to focus on the
mathematics content handled by the strategy instead of on
the selection of a proper strategy. She mediated discus-
sions by focusing on the relationships between numbers
(through the use of labels such as meters and rotations -
e.g., the relationship between numbers of rotations and
distance traveled in meters), on what each number repre-
sented at each stage of the solution (e.g., the distance per
single rotation, the cost per gallon of gas, etc. - numbers
calculated in the process of reaching the final answer),
and on the details of working through this mathematical
procedure (rounding, multiplying without a calculator,
etc.). Thus, teacher A was not limited to discussions as to
which mathematical procedure was best because that
procedure was already a more-or-less routinized practice
of students. She could instead explain the mathematical
underpinnings of that practice as it related to the prob-
lems, thereby focusing on the content of proportional
reasoning skills. Again, further investigations could dis-
aggregate the effects of the intervention, the teacher, and
other factors to better understand each.
The game at the center of the intervention seems well

designed for its purpose and our results suggest focusing
further development on the activities surrounding the
game. If after some further research teacher A’s approach
to abstraction bridge discussions is found to be success-
ful with other students at other locations, professional
development training and the teacher manual might be
revised to help teachers adopt such an approach. Whereas
it seems unlikely that students will all have a shared previ-
ous experience of using a particular solution strategy (as
was the case at school A), teachers can nonetheless ap-
proach discussions in much the same way - by highlight-
ing the relationships between the numbers, requiring
students to explain what each number represents at each
stage of the solution, and fostering proper mathematical
habits in rounding, multiplying, etc. This might seem like
an intuitive approach to discussing mathematics problems
but our evidence suggests otherwise. Perhaps the more
common intuition is to present as many solution strat-
egies as possible and to allow students to decide which
they prefer of those decidedly correct. This is not to imply
that allowing students to present incorrect solutions
should be considered unproductive. In fact, teachers
might find them to be teachable moments that can
highlight how the strategy is unsuccessful for the prob-
lem at hand - not only in regard to the final calculation
but also to the incorrect/meaningless numbers gener-
ated at each stage of the solution. Whereas scripting
teachers’ contributions seems like a rigid approach,
explaining to teachers what we have found to work
(whether within their manuals and/or as part of profes-
sional development) could foster these behaviors in
their own implementations.
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In summary, this preliminary study suggests that the
design of the Expedition Atlantis intervention, which
included four main features that were informed by the
findings in previous robot-math interventions (e.g.,
RSD), was successful in fostering both students’ propor-
tional reasoning skills and personal interests/values as
determined by within-participant comparisons. How-
ever, further investigations of student and teacher char-
acteristics seem warranted to determine the influences/
interactions of both in order to be able to maximize the
potentials of robot-math activities.
The current effort represents but one type of inte-

grated STEM instruction, namely technology and engin-
eering used to teach mathematics. Within that type of
STEM instruction, it provides a model for how technol-
ogy and engineering could be used more often to teach
mathematics: focusing on one kind of mathematics, de-
veloping model eliciting activities centered on that
mathematics, using rich game-like scenarios to main-
tain engagement, and abstraction bridges to generalize
the learning. Similar methods could be used in other
forms of STEM education - engaging students with
application-focused, real-world activities that do not cen-
ter the to-be-learned skills as the ultimate goals but in-
stead necessitate and motivate (particular, repeatedly
practiced) skills as tools.

Endnotes
aBecause some students scored as outliers on a number

of measures (number correct on the pre-test, self-rating
of familiarity with robots, pre-test ratings of interests or
value), those students were removed from analyses to
assess their influence. This was true of 33 of our 116
students but when removed, analyses revealed the same
pattern of results. Consequently, they remained included.
This is true both of the previously presented ANCOVA
and the subsequently presented t-tests.

bThe base rate strategy label is one added by the authors.
Students most often did not provide a name for their
strategy - unless otherwise noted in the case of T charts
and scale factors.
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