HELPING STUDENTS

BUILD CONCEPTUAL
MODELS = the Lost Manual

CHANGING CULTURE IN ROBOTICS CLASSROOMS - NSF DRK-12 1418199

THINGS THAT
| KNOW

/—) THINGS THAT
| HAVE DONE

.

-

THINGS
THAT | AM

)

LEARNING AND
LOTS OF OTHER
THINGS
Carnegie Mellon

Robotics Academy

Helping Students Build Conceptual Models — the Lost Manual
Carnegie Mellon Robotics Academy

Pittsburgh, Pa.

December, 2016

Authors
Robin Shoop, Jesse Flot Carnegie Mellon Robotics Academy
Jason McKenna Robomatter Incorporated

Acknowledgments

Our work would not be nearly as good without the support, direction, and ideas that are spawned by
Chris Schunn and Mary Kay Stein’s team from the University of Pittsburgh’s Learning Research and
Development Center — Chris has guided our collaborative work from the University of Pittsburgh side
since 2006 when CMU and PITT began their working together. Ross Higashi and Eben Witherspoon are
current doctorial students at PITT and have been have been instrumental in the development of the
lessons and teacher materials as well as working closely with our teacher partners.

Thank you teachers from the North Allegheny School District who have been instrumental in helping our
team to test the new curriculum modules in their classrooms: Jenn Smoller, Josh Krawchyk, Heath
Lauster, Matt Kohler, Nick Vorrasi, Greg Waslo, and Steve Zurbach. They have been instrumental in
providing feedback on the lessons, identifying classroom issues, and helping the team to collect data.

Vu Nguyen is the lead programmer for the Computer Science STEM Network (CS2N). His work on the
development of CS2N enables the team to collect and aggregate large amounts of student data quickly
and efficiently.

Krishna Pandravada for his art direction.

Robomatter Incorporated, VEX Robotics, and the National Science Foundation — who provide funding for
this work.

This material is based on work supported by the National Science
Foundation under DRK-12 research, Award Number 1418199, Changing
Culture in Robotics Classrooms. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation or
any collaborator or partner named herein.

Suggested Citation

Flot, J., McKenna, J., Shoop,R. (2016). Helping Students Build Conceptual Models — the Lost Manual. Carnegie
Mellon Robotics Academy, Pittsburgh, PA. Retrieved from: http://www.cs2n.org/teachers/research

©Copyright 2016 Carnegie Mellon Robotics Academy

Helping Students Build Conceptual Models — the Lost Manual

Have you ever taught students how to program a robot and then when you challenged them to
program something just a little different they get stuck? The Lost Manual is part one of a series of
articles that describe how you can help students develop a conceptual model of what computing is that
they can build on as they learn programming. This approach moves teachers away from teaching
students to memorize code snippets and reserved words, to placing the responsibility for learning on the
student as they build a conceptual framework that enables them to understand how computers make
decisions. After reading these articles, we hope that you test the lessons and give us feedback. Our goal

is to build better tools for teachers. Please send your comments to rshoop@CMU.edu .

Constructivism — Building on an Approach That You Already Use!

Constructivism is a theory of
learning which claims that people
construct knowledge through their
experiences and interactions with the
world rather than by merely receiving
and storing knowledge transmitted by

the teacher'. Robotics teachers use

constructivist lesson design regularly.
Picture 1 — Student build compound gear system
For example, when robotics teachers
teach mechanical advantage, a physics principle, they often have students build and conduct
experiments using compound gears (picture 1), or they use the example of a 10-speed bicycle’s gear
train in order to make connections between what the student already understands and the new

concept—mechanical advantage. When students build and play with the mechanical system they begin

to create a mental model of what the term mechanical advantage means. Then, when the teacher

©Copyright 2016 Carnegie Mellon Robotics Academy

introduces the formula to calculate mechanical advantage, the student discovers the proportional
relationships that exist between the associated gears and the concept of mechanical advantage. This
constructivist approach begins by helping students develop a mental model of an abstract concept, is
followed up with contextual examples, and then is formalized through the introduction of the academic
theory behind the concept. The mechanical advantage lesson example provides students with the type
of scaffolding that lead to deeper understanding and with anchors that provide them with the ability to

recreate meaning later when they need to designing a robot to lift or pull a heavy load.

Constructivists believe that the learner must be actively engaged in the learning process and
places the responsibility for learning on the learner” and that learning is an active process in which

learners construct meaning by linking new ideas with their existing knowledge™.

This project began with the following question - Can we develop a set of teaching tools that not
only teach students how to program robots, but also shows measurable student gains in their ability to
think computationally”? The methods that we’ve developed uses Model Eliciting Activities’ that enable

students to build a mental model of what programming and computing looks like before they are tasked

Table 1. Computational Thinking Practices Framework to actually program their robot. And

1. Analyzing the effects of developments in computing finally, we place the activities into the
2. Analyzing their computational work and the work of others Computational Thinking Practice"
3. Designing and apply abstractions and models framework (Table 1) enabling teachers

4. Designing and implement creative solutions and artifacts to foreground computer science

5. Communicating thought processes and results . .
understandings, practices, and

6. Collaborating with peers on computational activities

terminology in a robotics context.

Teaching Programming Concepts Rather Than Robot Specific Programming Solutions
Research shows that “memory and organization are not only correlated, but organization is a

necessary condition for memory.”" One of the issues that needs to be addressed for novice

©Copyright 2016 Carnegie Mellon Robotics Academy

programmers is that they have no effective model of a computer;" that is how a computer stores and
processes information. An effective model is a cognitive structure that connects prior knowledge and
experience to new knowledge. Our goal is to create lessons that enable students to build mental models
where they can process, analyze, store, and build new understandings. Lessons need to be scaffolded,
and designed so that new programmers learn that programming is built on a common conceptual
foundation that involves how computers make decisions. These types of lessons will enable students to
gain a generalizable understanding of computing as opposed to a hardware/software specific

understanding of how to program a robot.

We are testing this approach using our existing curriculum (which is posted online). Each change
is designed to immediately engage students in self-directed problem solving activities where they build
conceptual models and identify their own learning targets. Each updated lesson begins with a Model

Eliciting Activity, is followed by the existing curriculum module, and then has a reflection activity, see

Existing Lesson Picture 2. All problems are solved collaboratively in teams

Guided Instruction Videos
Check Your Understandings
Try It! / Mini-Challenge
Complete the Challenge

>
=
2
=
3]
<

and require students to document and communicate what

Activity

(oY) c
£ =)
= =]
S 3
w @
I3 (a4
©

3 =
= =

they have learned; this lesson design aligns with features

Picture 2 — Bookend Format

found in both Computational Thinking Practices and Model

Eliciting Activities. Concurrently, students are asked to develop a list of things that they don’t know;
these topics provide the student with a set of new self-defined learning targets. The reflection portion of
the activity provides additional opportunities for learning by enabling students to make sure that they
had all of their student defined learning targets answered as well as new topics that emerge as they
complete the lesson. The goal of each lesson is to place on onus of learning on the student and to
enable them to create conceptual models that allow them to rectify, synthesize, and categorize new

information as it emerges similar to how students learned in the compound gear ratio lesson example.

©Copyright 2016 Carnegie Mellon Robotics Academy

These lessons are designed to complement the Introduction to Programming VEX IQ curriculum
found for free at the Robotics Academy website. The lessons are being tested with over 500 middle
school students. The test uses VEX 1Q robots and ROBOTC Graphical programming language.

The First Lesson — The Lost Manual

When you tell novice programmer that they are going to “program a robot” what do you think
that they envision? Have they seen the programming interface (API)? Do they know how to navigate the
API? Do they know about syntax? What is a robot? | imagine that some kids are excited, but have no
idea what to expect. This first lesson, the Lost Manual, is designed to provide novice programmers with
a mental model of what it means to “program a robot”. This model sets the stage for the rest of the
lesson. The next couple of pages include a set of teacher notes and handouts that enable you to try out
and test “the Lost Manual” lesson. The handouts are designed to be used with VEX 1Q and ROBOTC
Graphical, but could be easily be modified for LEGO.

The next article will highlight how to implement the same lesson using ROBOTC text based
programming, this lesson is implementable with either VEX IQ or VEX EDR robots.

If you try this lesson and have comments on what worked and what didn’t please let us know.

" Ben-Ari, Mordechai. "Constructivism in computer science education." Acm sigcse bulletin. Vol. 30. No. 1. ACM,
1998.

i https://en.wikipedia.org/wiki/Constructivism_(philosophy_of education)

i Naylor, Stuart, and Brenda Keogh. "Constructivism in classroom: Theory into practice." Journal of Science Teacher
Education 10.2 (1999): 93-106.

v Grover, Shuchi, and Roy Pea. "Computational Thinking in K=12 A Review of the State of the Field." Educational
Researcher 42.1 (2013): 38-43.

VLesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for
students and teachers. In A. E. Kelly & R. Lesh (Eds.), Handbook of Research Design in Mathematics and Science
Education (pp. 591-646). Mahwah, NJ: Lawrence Erlbaum Associates.

v Bienkowski, M., et al. "Assessment Design Patterns for Computational Thinking Practices in Secondary Computer
Science: A First Look." SR! International (2015).

Vi Mandler, George. "Organization and memory." Psychology of learning and motivation 1 (1967): 327-372.

vii Ben-Ari, Mordechai. "Constructivism in computer science education." Journal of Computers in Mathematics and
Science Teaching 20.1 (2001): 45-74.

©Copyright 2016 Carnegie Mellon Robotics Academy

SRI Computational Thinking Practice Design Patterns

Our goal is to encourage robotics teachers to

Table 1. Computational Thinking Practices Framework) .
foreground and integrate Computational

1. Analyze the effects of developments in computin s

Y P puting Thinking Practices (CTP) into their daily
2. Analyze their computational work and the work of others

_ . classroom practices. This page is designed as
3. Design and apply abstractions and models a CTP primer for teachers not familiar with
4. Design and implement creative solutions and artifacts CTP. All teachers should read the full paper
5. Communicate thought processes and results which can be found at:
6. Collaborate with peers on computational activities http://pact.sri.com/resources.html

Open up the Assessment Design Patterns for
Computational Thinking Practices paper. The Assessment Design Patterns for Computational Thinking
Practices shown below provide a very small glimpse into the actual design patterns. These partial design
patterns were taken directly from the SRI website which is referenced above.

1. Analyze the effects of developments in computing — This design pattern askes student to recognize
aspects of computers and computing. They will show an understanding of how computing has enabled
innovations in various disciplines and in society as a whole and at the same time has given rise to ethical

(e.g., privacy) and social justice (e.g., equal access) issues. They will also demonstrate a broad
understanding of “intelligent” machines and the idea of networked systems.

2. Analyze their computational work and the work of others — This design pattern supports the
development of tasks in which students demonstrate that they can evaluate computational work
(resulting in artifacts such as a program, program outputs, a website, or problem solution) and compare
multiple computational artifacts. Students are able to recognize how different techniques can be used to

solve problems or achieve computational goals in different ways.
3. Design and apply abstractions and models — This design pattern supports the development of tasks in
which students use ideas and representations that capture general to specific aspects, or patterns, of an

entity or a process and the relationships/structures among entities or processes, including level of detail.
This may include designing general solutions to problems or generalizing a specific solution to encompass
a broader class of problems (functional abstraction).

4. Design and implement creative solutions and artifacts — This design pattern supports the development of
tasks in which students translate novel ideas and problem solutions into computational solutions and
artifacts. This design pattern encompasses steps of both problem solving and creative processes,

including understanding, decomposing, exploring (e.g., by creating different representations of the
problem with storyboards, flowcharts, and pseudocode), creating products that show one or more
designed solutions and/or artifacts, and testing and improving the solution and or artifact.

5. Communicate thought processes and results - Communicating about computational artifacts supports
many phases of computational thinking. This design pattern supports the development of tasks in which
students show that they can communicate the process and results of their work in a way that is

appropriate for the particular audience. Students can articulate major themes and ideas related to
computing in writing and orally supported by graphs, visualizations, and computational analysis.
6. Collaborate with peers on computational activities - Collaborative problem-solving or collaborative

design competency is the capacity of an individual to effectively engage in a process whereby two or
more agents attempt to solve a problem or design an artifact by sharing the understanding and effort
required to come to a solution/design and pooling their knowledge, skills and efforts to reach that
solution/design.

The Lost Manual — Teacher Notes

Introduction — The goal of this mini lesson is to enable students to develop a mental model

of what it means to program a VEX IQ robot using ROBOTC's Graphical language. At the end of
the mini lesson students should be familiar with: the graphical code, elements within the code,
the configuration of the robot, and the ROBOTC Graphical user interface.

The Problem - The Robotics Club has sample code, but doesn’t have the ROBOTC Graphical
User Manual. Your job is to look at sample code and interpret what it does. Circle and note
things that you don’t understand. Your team is responsible begin to develop a ROBOTC
“Getting Started” manual based on your interpretation and testing of the code.

Steps to the project

1.
2.
3.

Print the handouts that go with this lesson.

Present “The Problem” to your students. The robotics club has... - five minutes.

Pass out the handouts. One is a picture of a Clawbot robot and code, the others are
examples of ROBOTC Graphical code. Assign students to work in pairs and write down what
they think that the code does, have them circle anything that they don’t understand. — One
period.

Class/Group discussion — Have students review the handouts one handout at a time. This
activity can be done as a class or in teams. Students should review the code one line at a
time to make sure that they understand all parts of the code.

Assign students to — Upload the code to the robot and test it to see if the robot did what
they thought that it would do.

Note: Open the MEA folder in the VEX IQ Sample Programs to find the code.

Assign students to - Update their documentation if the robot did something that you didn’t
expect that it would do.

Work as a team to develop a digital version of a “ROBOTC Graphical “Getting Started”
programming guide.

Begin the Basic Movement lesson found in Introduction to Programming VEX 1Q

Complete the Basic Movement lesson and review the unit. Note: students do not need to
complete the full “Orchard Challenge”. Once your students get a general feel for accurately
moving straight and turning have the students move on to Sensors.

Handouts Pictured directly below are the lesson handouts.

R — T a—

T

©cCarnegie Mellon Robotics Academy — 2016 11/2016

The Lost Manual: Clawbot Source Code 1

Look at the table and picture below and describe what you think that it means. On the back of

the paper answer the questions in the text box at the right.

i Clawbot IQ With Sensors -
“ustom Configuratio

Model Description

Motor Forts:

VEX IQ Port 1l: leftMotor

VEX IQ Port 6: rightMotor
VEX IQ Port 10: armMotor
VEX IQ Port 1ll: clawMotor

Sensor Ports:
VEX IQ Port 2: touchLED (Touch LED)
VEX IQ Port 3: colorDetector

{Color Sensor/Hue Mode)
VEX IQ Port 4: gyroSensor (Gyro)
VEX IQ Port 7: distanceMd (Distance)
VEX IQ Port &: bumpSwitch

(Bumper Switch)

What is a “Model
Configuration”?

What is a “Custom
Configuration?”

What are Motor Ports?
What are Sensor Ports?
What do the numbers
mean?

Can you identify what the
robot’s sensors look like?

Look at the code below. Write what you think that each line of code does in the pseudocode box. Circle

things that you don’t understand.

Source Code 1

forward (| 720 ,l degrees v|, _E);
turnRight (,@ 5 [E)
Forward (|3 | rotations .| 50)33
turnLeft ([ﬁ],lml_,lﬁ);

1
2
3
4
5

VNV

Pseudocode

©cCarnegie Mellon Robotics Academy — 2016

11/2016

The Lost Manual - Clawbot Source Code 2

Look at the code below. Write what you think that each line of code does in the pseudocode box. Circle
things that you don’t understand. Answer the questions below.

Source Code 2

repeat (HIEEEB) (| -
| forward (| 2 |,[rotations v],: 50 |); |
I ¢ turnRight (: 270 :,[degr‘ees vJ,' 50 '-IJ; |

Pseudocode

1. What is the difference between rotations and degrees?

2. What will this code make the robot do?

©cCarnegie Mellon Robotics Academy — 2016 11/2016

The Lost Manual - Clawbot Source Code 3

Look at the code below. Write what you think that each line of code does below the code. Circle things
that you don’t understand.

Move the Claw Motor for 0.3 seconds at 100 speed 1.
moveMotor (| clawMotor ~|,| @.3 |,| seconds ~|,| 100 |); 2
Move the Arm Motor for ©.5 seconds at 100 speed

0.5 |,|seconds v], 100 |);

While the Bumper Switch is not pressed...

Why are the blocks different colors?
Why did some of the numbers at
the left disappear and were
replaced by “//"?

moveMotor ([armMotor v],

Move the robot forward at power level 50
setMotor ([leftiotor ~|,[50 |); |
» setMotor (| rightMotor vl,[50 |);

Move backward for 0.65 seconds at power level -50 I
backward (| 0.65 |,| seconds ~|,| -50 |); |

Move the Arm Motor for 0.3 seconds at power level -50
moveMotor ([armMotor ~|,| 0.3 |,[seconds ~|,| -50 |); l
Move the Claw Motor for ©.3 seconds at power level -100
16, moveMotor ([clawdotor ~|,[0.3 |,[seconds +|,| -100 |); |

a7

©cCarnegie Mellon Robotics Academy — 2016 11/2016

