
Introduction to Programming

LEGO® MINDSTORMS® EV3
Teacher’s Guide

The Introduction to Programming EV3 Curriculum was
produced by Carnegie Mellon’s Robotics Academy

The Introduction to Programming EV3 Curriculum is not a LEGO® MINDSTORMS® product.
LEGO Education or the LEGO Group does not sponsor, endorse, or support this product.

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

1

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Preface
There is a growing recognition that Computational Thinking Practices are critical for
all students to learn. They form the cornerstone of the language of innovation, and
will drive all future STEM discoveries. They are a new set of “basic skills” that all
students need to know.

But what are they? At first glance, concepts like “consider problems analytically”
and “use data to inform decisions” seem abstract and difficult to comprehend.
Educational robotics systems like the EV3 provide a much-needed tool to make
them real and approachable.

Consider the first few activities in this curriculum: students program a robot to drive
fixed distances in set patterns. Even these simple programming constructs require
precise, thoughtful communication between student and robot – how far should
the robot move? How far should it turn? As the challenges become more complex,
students learn to break the large problems down into simpler ones, and construct
solutions with care, one step at a time.

Sensors add the element of data and make key information about the robot’s
environment available; numeric abstractions become a reality – 35 centimeters to
the nearest wall, turn 90 degrees – and enable the student to make smart decisions
about the robot’s behavior.

These practices – precise logical thinking, using data to make decisions, analyzing
problems, and building solutions in teams – are critical in all forms of problem-
solving, not just robotic ones.

Robotics activities are concrete, contextualized, and provide immediate feedback
– important factors in satisfying a student’s desire for success and creating the
motivation to continue learning. Students also learn about the robotics technologies
themselves, which impact all modern industries, from agriculture to healthcare,
banking, manufacturing, transportation, energy, and security. The pervasiveness of
robotics technologies, from airplane autopilots, to bank machines, to smartphones,
to self-driving cars helps students to be “engaged learners” as they believe that the
content that they are studying is important or will be valuable to them.

The Introduction to Programming curriculum is just that: an introduction. For many
teachers this will be your first experience at teaching robotics and programming. If
you need help, the Robotics Academy has lots of free resources on its website and
regularly offers teacher courses. If you have questions or find issues, we would love
to hear from you.

Enjoy your school year.

Ross Higashi , Robin Shoop,
Robotics Academy Learning Scientist Robotics Academy Director

Ross Higashi

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Table of Contents
3 FAQ
4 Checklist

1 Introduction
5 What is the Introduction to Programming

EV3 Curriculum?
6 Why should I use the Introduction to

Programing EV3 Curriculum?
6 What are the Curriculum’s Learning

Objectives?
6 When should I use the EV3 Curriculum in

my class?
7 How do I use the Curriculum?
8 What topics are covered in each Unit?
9 What “Big Ideas” does the Curriculum

teach?

10 Standards
10 Math Practices
10 Math Content
11 Common Core English/Language Arts
11 Next Gen Science Standards
12 Computer Science Standards

13 Classroom Setup
 How should student work stations be

setup?
 What are the System Requirements?

14 In the classroom
14 General layout of all Units
14-17 Batteries, Firmware, Ports, Menus
18 -19 Big Ideas that all students will learn
20 Using the EV3 Software

21 The Movement Unit
21-28 The Moving Straight Chapter
29-35 The Turning Chapter

36 The Sensor Unit
36-42 The Touch Sensor Chapter
43-49 The Ultrasonic Sensor Chapter
50-55 The Gyro Sensor Chapter
56-62 The Color Sensor Chapter

63 The Robot Decisions
Unit

63-69 The Loop Chapter
70-76 The Switch Chapter
77-82 The Switch Loops Chapter
83-86 The Line Follower Chapter

87 The Final Challenge
87-89 Final Challenge Resources
90-91 The Search and Rescue Challenge

92 Reproducibles
Pages 92 - 132 Unit Quizzes, Answer Keys,

Handouts, Worksheets and Rubrics
Note: We have been asked by practicing teachers
NOT to make these public and so they are not
printed with this document. They are made available
with the curriculum.

Addendum: Teacher Guide for
Bonus Material
Data Wires, Data Logging, and My Blocks

Table of Contents

2

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Frequently Asked Questions

Frequently Asked Questions (FAQ)

Before starting
 ► Will Introduction to Programming help me teach to Standards?

Yes! See Standards, pages 10 - 12.

 ► What do I need to prepare for class?
See Checklist, page 4 and Best Workstation Setup page 15.

 ► What topics are covered?
See Topics, page 8 and General Layout, page 14.

 ► What’s the lesson structure?
See How To Use, page 5.

 ► I already have programming tutorials in my software. Is this the same thing?
No. Introduction to Programming focuses on building critical thinking skills through programming,

rather than rote knowledge of code. See What are the Big Ideas taught..., page 9.

During class
 ► How do I begin with Introduction to Programming in my class?

See How do I use the Introduction to Programming Curriculum in my classroom, page 7.

 ► Are there notes available to help me teach the lessons?
Yes. Every page in Introduction to Programming is summarized and annotated starting on page

14. There are additional notes at the beginning of each chapter.

 ► What do I do about students who go faster/slower than the others?
All lessons are self-paced, so minor variation in pacing is not a problem. You can also include or

omit activities marked as Optional, and even let students work ahead on later chapters.

After class
 ► Are there quizzes or homework?

Each Chapter includes one or more Reflection Questions designed to let students apply their
skills and knowledge to a more sophisticated and writing-intensive task.

You can find additional Handouts, Worksheets and Rubrics starting on page 92.

FAQ

3

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Checklist

Introduction to the Teacher

Checklist

Identify the Focus of your Lesson
Robotics can be used to teach to lots of standards. This curriculum is designed
to introduce students to how to program, an important part of robotics, but not the
only thing that you can teach through robotics. Please read pages 5 - 12 of this
guide to learn more.

Set up the student workstations
See page 13, Workstation Setup.

(Recommended) Build the Driving Base for each robot
Since mechanisms aren’t the focus of this module, pre-building the basic robot
for your students can save multiple weeks of class time and allow them to begin
work immediately on Day 1. The plans can be found in the Moving Straight Unit
page 23.

Become familiar with the lessons
See page 7 to become familiar with the lesson flow. The general layout of the
Introduction to Programming the EV3 Curriculum is found on page 14. Review
the first couple lessons starting with Moving Straight on page on page 21.

Determine overall pacing for the module
Identify key dates that you would like to have each project due by; make these
clear to students in your syllabus or assignment sheets.

Review Big Ideas and Computational Thinking
See pages 18 and 19.

Review and print the Reflection Questions for each chapter
Chapter review questions, answer guides, and rubrics begin on page 92.

 Note: The reflection questions can be used as class discussion questions, given as homework,
 or as a quiz.

4

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Checklist

Introduction to the Teacher

What is the Introduction to Programming EV3 Curriculum?

The Introduction to Programming EV3 Curriculum is a curriculum module designed
to teach core computer programming logic and reasoning skills using a robotics
engineering context. It contains a sequence of 10 projects (plus one capstone
challenge) organized around key robotics and programming concepts.

Each project comprises a self-contained instructional unit in the sequence,
and provides students with:

 ► An introduction to a real-world robot and the context in which it operates

 ► A challenge that the robot faces

 ► A LEGO-scale version of the problem for students to solve with their robots

 ► Step-by-step guided video instruction that introduces key lesson concepts
(e.g. Loops) by building simple programs that progress toward the challenge task

 ► Built-in questions that give students instant feedback on whether they
understood each step correctly, to aid in reflection and self-pacing

 ► Semi-guided “Try It!” exploration activities that expose additional uses for and
variants on each behavior

 ► Semi-open-ended Mini-Challenges which ask students to use the skill they
have just learned to solve a relevant small portion of the final challenge

 ► The Unit Challenge based on the original robot’s problem, for students to solve
in teams as an exercise and demonstration of their mastery of the concept

 ► Additional Reflection Questions found in the back of this Teacher’s Guide allow
you to assess the depth of students’ understandings while challenging them to
apply their learning to a higher-order problem-solving and writing task.

10 Projects and One Capstone Programming Challenge

5

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Checklist

Introduction to the Teacher

What are the Learning Objectives of the
Introduction to Programming EV3 Curriculum?

 ► Basic concepts of programming
• Commands
• Sequences of commands

 ► Intermediate concepts of programming
• Program Flow Model
• Simple (Wait For) Sensor behaviors
• Decision-Making Structures

• Loops
• Switches

 ► Engineering practices
• Building solutions to real-world problems
• Problem-solving strategies
• Teamwork

When should I use the Introduction to Programming
 EV3 Curriculum with my class?

Introduction to Programming the EV3 is well-suited for use at the beginning of a
robotics class, as it will allow students to engage immediately and begin building
core programming and problem-solving skills before undertaking more ambitious
open-ended projects later in the course. This curriculum module should take
approximately 6 weeks.

Why should I use the Introduction to
Programming EV3 Curriculum?

Introduction to Programming provides a structured sequence of programming
activities in real-world project-based contexts. The projects are designed to get
students thinking about the patterns and structure of not just robotics, but also
programming and problem-solving more generally.

By the end of the curriculum, students should be better thinkers, not just coders.

6

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Checklist

Introduction to the Teacher

How do I use the Introduction to Programming
EV3 Curriculum in my class?

Introduction to Programming is designed for student self-pacing in small groups,
preferably pairs. Each pair of students should work together at one computer, with
one EV3 robot.

Curriculum tasks are designed to involve some – but not extensive – mechanical
consideration, so that hands-on design tasks may remain authentic without
becoming logistically difficult.

Solutions will not require parts in excess of those included in the 45544 EV3 Core
set, so it is sufficient to leave each team with one kit (although access to additional
parts may allow students to construct more creative solutions to problems).

A typical plan for an Introduction to Programming chapter is:

1. View the introductory video as a class, or in individual groups, then review the
challenge task for the unit

• In a group, identify and note key capabilities the robot must develop, and
problems that must be solved in individual engineering journals or class logs
(e.g. on sticky paper posted on the walls)

2. Groups proceed through the video trainer materials at their own pace, following
the video instruction directly, and constructing solutions to the Try It! and Mini-
Challenge steps as they go

3. Each group constructs its own solution to the Unit Challenge

• Groups may be asked to document their solutions in journals or logs, and
especially to explain how they overcame the key problems identified at the
start of the unit

4. Assign the Reflective Question for the chapter

• Students answer the Reflection Question for the chapter individually, as an in-
class or homework assignment

• Reflection Questions for each chapter can be found in the Reproducibles
section of this Teacher’s Guide

7

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Checklist

Introduction to the Teacher

What topics are covered in each Unit?

Unit Name Main Topics
 1. Moving Straight Motors, Sequences of Commands,

Block Settings, Downloading and
Running Programs, Move Steering Block

 2. Turning Turning, Types of Turns, Move Steering
vs. Move Tank Block

 3. Move Until Touch Sensors, Wait For Block, Touch Sensor,
Move Until Behaviors

 4. Move Until Near Ultrasonic Sensor, Thresholds
 5. Turn for Angle Gyro Sensor, Compensating for Sensor

Error
 6. Move until Color Color Sensor
 7. Loops Loops, Patterns of Behavior
 8. Switches Switches, Conditional Reasoning
 9. Switch-Loops Obstacle Detection Behavior, Repeated

Decisions Pattern
10. Line Follower (Mini-Unit) Line Following (a Repeated Decisions

Pattern Behavior)
11. Final Challenge Cumulative Application of Skills and

Knowledge

8

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

What are the Big Ideas taught in the
Introduction to Programming EV3 Curriculum?

Robotics can be something you teach with, as well as something you teach about.
Introduction to Programming uses robots, and covers robotics content, but ultimately
seeks to give students experience and access to a much broader set of skills and
perspectives called Computational Thinking.

 ► Big Idea #1: Programming is Precise
If you want a robot to do something, you need to communicate that idea with
mathematical and logical precision, or it won’t quite be what you intended.

 ► Big Idea #2: Sensors, Programs, and Actions
Data from sensors gives a robot information about its environment. A program
uses that data to make decisions, and the robot Acts on those decisions. Data
underlies the core of the entire process.

 ► Big Idea #3: Make Sense of Systems
To understand the way something works, construct a mental “model” of it in your
head that captures the important features and rules of the system. This helps you
make sense of it, and also gives you a tool to “play out” (similar) new scenarios in
your head to predict what would happen.

 ► Big Idea #4: Break Down Problems and Build Up Solutions
To solve a difficult problem, try breaking it down into smaller problems. Then,
solve the smaller problems, building up toward a solution to the big problem.

 ► Big Idea #5: Computational Thinking Applies Everywhere
These skills – mathematical and logical clarity, using data, systems thinking with
mental models, and problem solving – are not just for robotics. They are key to
solving many problems in the world.

A video introduction to these topics can be found in the “Big Ideas” block of the
Basics section of the product.

9

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

What Standards does the Introduction to
Programming EV3 Curriculum address?

Common Core Mathematics Practices
Skills math educators at all levels should seek to develop in their students

Standard (CCSS.Math.Practice) Introduction to Programming the EV3
MP1 Make sense of problems and persevere in
solving them

Chapters are all based around solving real-world
robot problems; students must make sense of
the problems to inform their solutions

MP2 Reason abstractly and quantitatively Programming requires students to reason about
physical quantities in the world to plan a solution,
then calculate or estimate them for the robot

MP4 Model with mathematics Many processes, including the process of
programming itself, must be systematically
modeled on both explicit and implicit levels

MP6 Attend to precision Robots require precise (and accurate) input, or
their output action will be correspondingly sloppy

MP7 Look for and make use of structure Understanding the structure of the physical
environment, the interrelated components of
robot hardware and software, and commands
within a program are vital to successful solutions

MP8 Look for and express regularity in repeated
reasoning

Any programmed solution to a class of
problems relies on the programmer recognizing
and exploiting important patterns in the
problem structure. There is also an emphasis
throughout the module on recognizing common
programmatic patterns, as well as patterns within
a solution that invite the use of Loops.

Common Core Mathematics Content
Standard (CCSS.Math.Content) Introduction to Programming the EV3
6.RP.A.1 Understand the concept of a ratio
and use ratio language to describe a ratio
relationship between two quantities

Students use ratio language to describe and
make use of the relationship between quantities
such as Wheel Rotations and Distance Traveled

6.RP.A.2 Understand the concept of a unit
rate a/b associated with a ratio a:b with b!=0,
and use rate language in the context of a ratio
relationship

The relationship between Wheel Rotations
and Distance Traveled is a rate, customarily
understood through a unit rate such as “# cm per
rotation”.

6.R.A.3 Use ratio and rate reasoning to solve
real-world and mathematical problems

Students are required to apply ratios and rates
when they build their prototype examples of their
real world robots.

7.RP.A.3 Use proportional relationships to solve
multistep ratio and percent problems.

Comparisons between rate-derived quantities
are common during robot navigation tasks.

Common Core English Language Arts
10

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Standard (CCSS.ELA-Literacy) Introduction to Programming the EV3
WHST.6-8.1 Write arguments focused on
discipline-specific content.
[See also: WHST.6-8.1.a to WHST.6-8.1.e]

Reflection Questions ask students to analyze,
evaluate, and synthesize arguments in response
to robotics and programming problems

WHST.6-8.4 Produce clear and coherent writing
in which the development, organization, and
style are appropriate to task, purpose, and
audience.

Reflection Question tasks include composing
technical critiques, technical recommendations,
and creative synthesis.

Next Generation Science Standards (NGSS)
Standard Introduction to Programming the EV3
MS-ETS1-2. Evaluate competing design
solutions using a systematic process to
determine how well they meet the criteria and
constraints of the problem.

Solving challenges requires students to create
and evaluate both hardware and software
designs according to scenario scoring criteria.
Some Reflection Questions require students to
make recommendations between competing
alternatives based on criteria that they define.

MS-ETS1-4. Develop a model to generate
data for iterative testing and modification of a
proposed object, tool, or process such that an
optimal design can be achieved.

When solving more difficult and complex
challenges, students are guided toward iterative
testing and refinement processes. Students
must optimize program parameters and design.

HS-ETS1-2. Design a solution to a complex real-
world problem by breaking it down into smaller,
more manageable problems that can be solved
through engineering.

Problem Solving methodology for challenges
directs students to break down large problems
into smaller solvable ones, and build solutions
up accordingly; challenges give students
opportunities to practice, each of which is based
on a real-world robot

HS-ETS1-3. Evaluate a solution to a complex
real-world problem based on prioritized criteria
and trade-offs that account for a range of
constraints, including cost, safety, reliability, and
aesthetics as well as possible social, cultural,
and environmental impacts.

Some Reflection Questions require students
to make recommendations about real-world
policies (e.g. requiring sensors on automobiles)
based on the impact of that decision

What Standards does the Introduction to
Programming EV3 Curriculum address? (continued)

11

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

Computer Science Principles Framework (CSP)
Learning Objective Introduction to Programming the EV3
1.1.1 Use computing tools and techniques to
create artifacts. [P2]

Challenge activities result in the creation
of a (simple) algorithmic solution and an
accompanying program that implements it.

1.1.2 Collaborate in the creation of
computational artifacts. [P6]

Students work in teams to accomplish tasks.

1.1.3 Analyze computational artifacts. [P4] Students perform debugging on their own code,
as well as analyze and evaluate others’ code
and suggested code in Reflection Questions.

1.3.1 Use programming as a creative tool. [P2] Students use programming to solve model
challenges based on challenges real robots face.

2.2.1 Develop an abstraction. [P2] Robots gather information about the world
through sensors, which turn physical qualities of
the world into digital abstractions. Students must
understand and work with this data to develop
then implement their solution algorithms.

2.3.1 Use models and simulations to raise and
answer questions. [P3]

Students construct and use a “program flow”
model of programming itself to understand how
the robot uses data to make decisions and
control the flow of its own commands.

4.1.1 Develop an algorithm designed to be
implemented to run on a computer. [P2]

Students develop solution algorithms to
each challenge and mini-challenge problem
before implementing them as code. Reflection
Questions also ask students to evaluate
algorithms expressed as pseudocode.

4.2.1 Express an algorithm in a language. [P5] Students develop code to robotics challenges in
the EV3 Programming Language.

5.1.1 Explain how programs implement
algorithms. [P3]

Students must communicate solution ideas
within groups and as part of class discussion, as
well as in Reflection Questions.

5.3.1 Evaluate a program for correctness. [P4] Students test and debug their own code, and
evaluate others’ in the Reflection Questions.

5.3.2 Develop a correct program. [P2] Programmed solutions to challenges must work.
5.3.3 Collaborate to solve a problem using
programming. [P6]

Students develop solutions in teams.

5.4.1 Employ appropriate mathematical and
logical concepts in programming. [P1]

Relationships such as “distance per wheel
rotation” are important to making solutions work.

7.4.1 Connect computing within economic,
social, and cultural contexts. [P1]

Reflection Questions ask students to make
evaluative recommendations based on the
impacts of robotic solutions in context.

What Standards does the Introduction to
Programming EV3 Curriculum address? (continued)

12

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

What is the best setup for student workstations?

Ideally, each pair of students will work together at one computer, with one EV3 robot.

Set up each workstation with:

• LEGO® MINDSTORMS® Education EV3 Programming Software installed
from its DVD

• Education version required*
• Access to the Introduction to Programming LEGO® MINDSTORMS® EV3

curriculum software
• This can be installed locally or on a local network server via DVD
• This may also be accessed remotely via internet, if your school’s

network infrastructure and policies allow
• Two pairs of headphones with headphone splitters

• One pair for each student
• Avoid using speakers, as multiple workstations in the same classroom

will generate too much overlapping noise
• One 45544 LEGO® MINDSTORMS® Education Set

* Retail versions of the EV3 set do not include the Gyro Sensor or software support for it by default

LEGO® MINDSTORMS® Education EV3 Programming Software: See packaging

Introduction to Programming EV3 Curriculum

• HTML5-compatible browser (Firefox, Chrome, Internet Explorer 10+)

• Tablets (iPad, Android, Windows) with HTML5 browsers should work as well,
if accessing the curriculum from the Internet

What are the System Requirements for the
Introduction to Programming EV3 Curriculum?

13

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

The Virtual NXT is not a LEGO® MINDSTORMS® product. LEGO Education
or the LEGO Group does not sponsor, endorse, or support this product

What is the general layout of the
Introduction to Programming EV3 Curriculum?

14

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Introduction to Programming
LEGO® MINDSTORMS® EV3
This is the main menu. Click any section to
open the first step, or click a page number to
go directly to the page.

Basics Unit
Getting Started: Set up the robot and learn
about its basic operation and maintenance

Big Ideas: Five big ideas that will be
important throughout the course

Using the Software: General usage patterns
in the EV3 Programming Software

Behaviors Unit
Movement: Use sequential commands to
make the robot move and turn

Sensors: Use Sensors to stop the robot in
different situations

Decisions: Use Loops and Switches to
control the program with smarter decisions

Final Challenge Unit
Combine the techniques of earlier units to
tackle a more complex challenge

15

Basics - Getting Started

Basics> Getting Started Chapter
The Getting Started portion is designed to get a new EV3 user up and running as
quickly as possible. Instructors should follow along with all steps, but the first two
pages in the chapter could be considered optional for students.

Key Concepts: EV3 operation and maintenance, battery requirements, firmware

 ► Getting Started 1: Batteries
Walks through the options and procedures for powering the EV3

 ► Getting Started 2: Firmware
Introduces the concept of firmware and walks through the process of updating
the EV3 to the latest version

 ► Getting Started 3: Ports
Identifies and describes the functions of the various ports on the EV3

 ► Getting Started 4: Menus
Walks through and explains the main areas and functions available through the
EV3’s on-screen menus

Hints:

 ► Go through Battery and Firmware installation prior to using the robots with
students. You may want students to view these videos as well for familiarity,
should issues arise.

 ► The Ports (3rd) and especially Menus (4th) videos are very helpful for students.

Teacher’s Edition Note: This chapter’s notes will point out common structural elements such as Check
Your Understanding Questions. In later sections, common notes will be omitted, as they are the same
throughout the product.

16

Basics - Getting Started

Getting Started 1: Batteries
This step walks you through the process
of charging and installing the rechargeable
battery pack in the EV3.

Batteries Video
Walks you through the process of charging
and installing the battery. Follow along with
the video as it covers each step!

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

Firmware Video
Walks you through the process of loading
Firmware onto the robot. Follow along with
the video as it covers each step!

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

Getting Started 2:
Downloading Firmware
This step explains the idea behind Firmware,
and walks you through the process of loading
firmware onto the robot.

Bottoms of pages will sometimes be omitted from the
Teacher’s Guide if they do not contain important notes.

That is the case here – the next page of the guide will
go straight to the third Getting Started video.

17

Basics - Getting Started

Getting Started 3: Ports
This step provides an overview of the Ports
on the EV3 brick.

Ports Video
Identifies and explains the function of each
port on the EV3 brick.

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

Menus Video
Shows you how to use the EV3 on-screen
menus to control robot settings, run
programs, and more.

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

Getting Started 4: Menus
This step explains the general interface
conventions and tours the main areas of the
EV3 on-brick menu interface.

Basics - Big Ideas

18

Big Ideas 1 & 2

Big Ideas 1 & 2 Video

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

This video introduces two concepts:

Big Idea #1: Programming is Precise
If you want a robot to do something, you need to
communicate that idea with mathematical and logical
precision, or it won’t quite be what you intended

Big Idea #2: Sensors, Programs, and Actions
Data from sensors gives a robot information about
its environment. A program uses that data to make
decisions, and the robot Acts on those decisions.
Data underlies the core of the entire process

Big Idea 3 Video
This video introduces:

Big Idea #3: Make Sense of Systems
To understand the way something works, construct
a mental “model” of it in your head that captures
the important features and rules of the system. This
helps you make sense of it, and also gives you a tool
to “play out” (similar) new scenarios in your head to
predict what would happen

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

Big Idea 3

Basics - Big Ideas

19

Big Ideas 4 & 5

Big Ideas 4 & 5 Video

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

This video introduces two concepts:

Big Idea #4: Break Down Problems and Build Up
Solutions
To solve a difficult problem, try breaking it down into
smaller problems. Then, solve the smaller problems,
building up toward a solution to the big problem.

Big Idea #5: Computational Thinking Applies
Everywhere
These skills – mathematical and logical clarity, using
data, systems thinking with mental models, and
problem solving – are not just for robotics. They are
key to solving many problems in the world.

Basics - Big Ideas

20

Basics: Using the
EV3 Software

Using the Software

Using the EV3 Software Video

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Answer them before moving on.

This video provides introductory tips and trick of how
to use the EV3 software

 ► How to Open the Software

 ► Finding Building Instructions

 ► Beginning Programming

 ► How to Link Blocks

 ► Mode Settings

 ► Configuring Blocks

 ► Saving

 ► How to Run the Program

 ► Navigating to the Program on the EV3

 ► Scrolling on the Software Interface

 ► Commenting Your Code

21

Movement > Moving Straight Chapter
In Moving Straight, students program the robot to move forward, then explore
variations such as moving for different distances or at different speeds.

Key Concepts: Writing and running programs, Move Steering Block, Rotations and
Distance, Sequential commands

 ► Moving Straight 1: Introduction to Sensabot
Introduces the real-world robot (Sensabot), and the challenge modeled after it
(Sensabot Challenge)

 ► Moving Straight 2: Robot Config
Contains building and setup instructions for the rest of the chapter

 ► Moving Straight 3: Steering Forward
Introduces the Move Steering Block and programming the forward movement

 ► Moving Straight 4: Arm Control
Introduces the Medium Motor Block and programming the arm to move

 ► Moving Straight 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► The Moving Straight Challenge
Requires students to make the robot move to 3 marked lines by controlling the
distance of each movement

Hints:

 ► Remember that each chapter is based around the real-world robot theme and
challenges. Use these contextual surroundings to help ground discussions
and decision-making processes (e.g. “Do you think guessing to find the correct
distance would be appropriate, since Sensabot needs to perform this task reliably
in the real world?”). [NGSS: MS-ETS1, CCSS.Math.Practice.MP1]

 ► The Distance a robot moves is (Wheel Circumference * Wheel Rotations). This
is because the turning of the robot’s wheels are what propel it along the ground.
[CCSS.Math.Practice.MP4, CCSS.Math.Content.7.RP.A.2]

Teacher’s Edition Note: This chapter’s notes will point out common structural elements such as Check
Your Understanding Questions. In later sections, common notes will be omitted, as they are the same
throughout the product.

Introduction to the
Moving Straight Unit

22

Movement - Straight

Moving Straight 1: Introduction
This module introduces the Sensabot real-
world robot that the chapter Challenge is
based on.

Sensabot Video
Introduces the real-world robot and
summarizes the chapter Challenge. Students
should watch this video before beginning
work on the chapter.

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Students should answer them
before moving on.

These generally correspond to Remembering and
Understanding tasks in Bloom’s Taxonomy.

Higher-level enrichment and assessment will be
handled by Try It! exploration items and Mini-
Challenge activities in later steps.

23

Movement - Straight

Moving Straight 2:
Robot Configuration

Moving Straight 3:
Steering Forward

The Building Instructions are located inside
the LEGO Programming Software. Follow the
instructions on this page to view them.

As of EV3 Software version 1.0.1, the
instructions cannot be printed, and must be
viewed on-screen.

This step introduces the Move Steering
Block, and walks students through
programming a straight forward movement.

Step-by-Step Video
Walks students through the process of
starting up the software, writing the Moving
Straight program, and running it. Make sure
students follow along with the instructions as
the video plays (pause as needed).

Check Your Understanding Questions
Quickly check comprehension of the topics
covered in the video. Students should
answer them before moving on.

24

Movement - Straight

Mini-Challenge: 50 cm challenge
Challenges students to make the robot move
a specific distance by adjusting the Rotations
setting.

Mini-challenges ask students to perform a task that is
very closely related to what they have already done in
the video-guided portion.

Hints are provided, and can be revealed (one at a
time) by clicking the Show Hint button on the box
below the picture.

Mini-Challenges typically align to Applying tasks in
Bloom’s Taxonomy.

Optional Activity Cutoff Line
Activities below this line are helpful but not critical to
the completion of the Challenge. Use these activities
to help with class pacing.

[Optional] Try It!: Brake vs. Coast

Prompts students to try changing the Brake
setting on the Move Steering Block to “Coast”
and see what happens.

Try It! activities prompt students to explore an
additional feature or area of the software.

The What Happens? button will show the result so
students can confirm their observations.

Sometimes this exploration is for enrichment, but
often it is important to the Challenge. Use the Optional
Cutoff to identify when an activity is critical.

[Optional] Did You Know?: Projects
and Programs
Explains the relationship between Projects
and Programs in the EV3 Programming
Software.

Did You Know? activities provide additional
background information on various topics.

Moving Straight 3 (cont’d)

25

Movement - Straight

[Optional] Did You Know?:
Rename Program
Programs can be renamed within Projects,
although this is typically only done when a
Project contains multiple programs.

[Optional] Did You Know?:
EV3 Menus
A brief overview of useful functions in the
EV3 on-screen menu system. See the
Basics unit or the EV3 manual for more in-
depth information.

[Optional] Did You Know?:
Auto-Detecting Ports
The EV3 has the built-in capability to locate
and identify any motor or sensor plugged into
it. This means you don’t have to worry about
port numbers, as long as there is only one of
a given device type attached (e.g. only one
Touch Sensor).

However, since there are two motors on the
robot, you do need to pay attention to which
one is the left and which is the right.

Moving Straight 3 (cont’d)

26

Movement - Straight

Moving Straight 4: Arm Control

This step introduces the concept of
sequential commands. The Medium Motor
Block, which controls the single arm motor is
added to the program..

Step-by-Step Video
Walks students through adding a second
and third command to the program, using the
Medium Motor Block to control the robot’s
arm. Students should follow along with the
video.

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Students should answer them
before moving on.

Try It!: Negative Power
Negative power levels make the robot move
backward.

Mini-Challenge: Cargo Retrieval
Challenges students to build on their previous
programs by making the robot move forward,
then lower its arm, then move back to its
starting location.

27

Movement - Straight

Moving Forward 5: Review

Did You Know?: Getting the Program
Stuck

Explains one of the common problems with
sequentially-executed programs: if any of
the commands cannot complete (e.g. if the
arm hits the ground and cannot lower any
further), the entire program will be “stuck”
and unable to progress.

Review steps come at the end of the guided
portion of a unit, just before the main
Challenge. Sample solutions to the Mini-
Challenges are shown here in picture format.

Placing the mouse cursor over any block in
the program will show a detailed explanation
identifying the block, describing the literal
command it issues, and explaining what
action it performs in context.

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Students should answer them
before moving on.

Moving Straight 4 (cont’d)

28

Movement - Straight

Moving Straight Challenge

This step lays out the details for the
Sensabot Chapter Challenge. Students
should work in their teams to complete the
challenge objectives.

Challenge Video
Describes the challenge in video format. The
robot must move to three marked locations
on a game board, and raise and lower its
arm at each location to represent taking a
sensor reading.

Challenge Diagram
A non-technical summary of the Sensabot
Chapter Challenge.

Challenge PDF
A link to the official rules and gameboard
layout for the Challenge in PDF format.
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in the attached printable
document.

Sensabot Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

29

Introduction to the
Turning Unit

Movement > Turning Chapter
In Turning, students program the robot to turn in place, then explore variations such
as turning in the opposite direction, and turning in a wide arc.

Key Concepts: Turning, Types of Turns, Steering setting

 ► Turning 1: Introduction to Autonomous Tractor
Introduces the real-world robot (Autonomous Tractor), and the challenge
modeled after it (Orchard Challenge)

 ► Turning 2: Robot Configuration
Contains building and setup instructions for the rest of the chapter

 ► Turning 3: Turning in Place
Uses the Steering slider on the the Move Steering Block to create turns

 ► Turning 4: Other Turns
Uses other settings on the Steering slider to create wide turns

 ► Turning 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► The Orchard Challenge
Requires students to program the robot to navigate rows of trees in an orchard

Hints:

 ► The “angle” turned by a robot is generally in reference to its heading. A 90 degree
turn means that the robot’s heading has changed by 90 degrees.

 ► When turning, a robot’s wheels travel along a curved path. The shape and angle
of the turn is determined by how far each wheel travels along that path. [CCSS.
Math.Practice.MP4, CCSS.Math.Content.7.RP.A.2]

Teacher’s Edition Note: Notes on the purpose of common structural elements such as Check Your
Understanding Questions are omitted from this section onward. To review these general notes,
please see the Movement > Moving Straight chapter.

30

Movement - Turning

Turning 1: Introduction
Introduces the Autonomous Tractor and the
Orchard Challenge.

Turning 2: Robot Configuration
Building Instructions for the robot are the
same as Moving Straight.

Check Your Understanding Questions
These questions are designed to quickly
check comprehension of the topics covered
in the video. Students should answer them
before moving on.

Autonomous Tractor Video
Introduces the real-world robot and
summarizes the chapter Challenge. Students
should watch this video before beginning
work on the chapter.

31

Movement - Turning

Turning 3: Turning in Place
This step introduces the Steering slider to
make the robot turn to the side. For now,
only the center and ends of the slider are
used. Intermediate settings produce “wide”
turns and are explored in the next step.

Mini-Challenge: 90 Degree Turn
Challenges students to make the robot turn
a specific amount (90 degree change in the
direction the robot is facing).

This activity is directly analogous to the “50
cm mini-challenge” in the previous chapter,
and pointing out the parallels in the two
problems is appropriate.

The ratio of Wheel Rotations to Body Turn on the
REM-EV3 driving base model is approximately 2:1;
that is, it takes 2 wheel rotations to turn the robot
around exactly 1 time. Turning the robot 90 degrees,
then, would take 0.5 wheel rotations (180 degrees).

[Optional] Try It!: Direction of Turn

Prompts students to try moving the Steering
slider to the other side. This produces a turn
in the opposite direction.

The direction of turn always matches what
you would get if you turned a steering wheel
in the same direction (“left” or “right”).

32

Movement - Turning

[Optional] Did you notice?: Wheel Pointers
Calls attention to a design feature of the robot:
pointers on the robot’s wheels help you see which
direction each wheel is turning, and how much.

The amount a wheel turns (e.g. 360 degrees of
wheel rotation) is proportional – but not identical –
to the amount the robot’s body will turn.

Turning 4: Other Turns
This step introduces off-center “wide” turns using
the Move Tank Block, which controls the robot’s two
wheel motor powers separately.

Any time the robot’s wheels move at different
speeds, the robot’s path will curve. The specific
shape of the curve is determined by the combination
of powers used.

Turning 3 (continued)

33

Movement - Turning

Mini-Challenge: Dizzy Drill
Challenges students to make the robot move
around an obstacle using a combination of
straight moves and turns (wide or in-place).

[Optional] Try It!: Different Motions

Prompts students to try different combinations
of motor powers. This produces differently-
curved turns.

Helper Activity: Role-play the robot

One student acts as the robot, while another student
issues left-foot and right-foot commands with different
power levels.

For instance, “left foot 50; right foot 0” means taking
a small step forward with the left foot and holding the
right foot in place. Straightening out your body from this
stance will make you turn slightly to the right, pivoting
around your right foot just as the robot does with a
Move Tank Block set to left 50, right 0.

Turning 4 (continued)

34

Movement - Turning

Turning 5: Turning Review
Sample solutions to the mini-challenges can
be found on this page.

Dizzy Drills has two sample solutions
provided: one for a strategy that uses two
right-angle turns to go around the back of
the obstacle, and one that uses a single
U-shaped turn to swing around the obstacle.

35

Movement - Turning

Orchard Challenge

This step lays out the details for the Orchard
Challenge. Students should work in their
teams to complete the challenge objectives.

Teams get to choose where they start
their robot for this challenge. It is to their
advantage to pick a specific spot and use
it every time, rather than moving the start
position or aligning the robot sloppily.

The route shown in the picture is just an
example, not the required (or necessarily
easiest) route.

Retain this Challenge board intact, if possible, as it
will be re-visited in the Switch-Loops chapter.

Orchard Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

36

Introduction to the
Touch Sensor Unit

Sensors > Move Until Touch Chapter
In Move Until Touch, students program a robot to wait until its Touch Sensor is
pressed before proceeding with other commands, then combine that behavior with
Motors On and Motors Off commands to make the robot stop and go based on
Touch Sensor commands.

This chapter is an exception to the pattern of “bookending” every set of activities with real-world
robots and challenges. While the chapter is still challenge-based, it is focused on the idea of sensors
rather than a specific robot that uses them.

Key Concepts: Wait Block, Touch Sensor, Forward Until Pattern

 ► Touch 1: Introduction to Sensors
Introduces the idea of Sensors, the Touch Sensor, and some of the Touch
Sensor-based behaviors in the lesson

 ► Touch 2: Robot Configuration
Contains building and setup instructions for the rest of the chapter

 ► Touch 3: Wait for Touch
Uses the Wait for Touch Block to make a robot wait for a Touch Sensor press
before continuing

 ► Touch 4: Forward until Touch
Combines Motor On and Motor Off commands with the Wait for Touch Block to
make the robot move forward until the Touch Sensor is pressed

 ► Touch 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► The Arm Position Challenge
Requires students to program a Touch Sensor-based “raise arm” behavior that
moves the arm to its “closed” position regardless of where the arm starts.

Hints:

 ► All of the chapters in the Sensors unit follow the general pattern laid out in this
chapter: Introduction, Wait for (Sensor), Forward until (Sensor), Challenge.

 ► The Touch Sensor does not have a real-world robot because simple touch
switches are not commonly found on real-world robots; typically, robots shouldn’t
physically collide with their surroundings to sense them.

37

Touch Sensor

Touch 1: Introduction
Introduces the idea of Sensors on the robot.

This chapter does not use a real-world robot.
Instead, it focuses on the first use of sensors
on the EV3 robot.

Touch 2: Robot Config
The robot is the driving base from the
Movement Unit, with a Touch Sensor added.

38

Touch Sensor

Touch 3: Wait for Touch
This step introduces both the Touch Sensor
and the Wait For (Sensor) Block.

The Touch Sensor physical mechanism is
explained at the bottom of the page.

The Wait For (Sensor) Block “holds up” the
program’s flow until the sensor condition is
met. When the condition is met, the program
continues (with a Move Steering block in this
case). This is the simplest way in which the
sensor can be used to control a behavior,
and is used throughout the Sensors Unit.

Try It!: Already Pressed
Since the Wait for Touch Block literally waits
for the “Pressed” state, it can be triggered
instantly if the sensor is already pressed in
when the program starts.

This is a common source of error with
all sensors: if the sensor is already in a
“triggered” position, the “wait” is invisibly
short. This is often mistaken for the program
“ignoring” the sensor.

Try It!: EV3 Buttons
The buttons on the front of the EV3 are
essentially touch sensors, and can be used
as such.

39

Touch Sensor

[Optional] Did You Know?:
How the Touch Sensor Works
An interactive animation showing how a
Touch Sensor acts as an electrical switch to
create a flow of electricity the EV3 detects.

Touch 3 (continued)

40

Touch Sensor

Try It!: Forward Until Release

Prompts students to try the “Released”
setting for the Wait for Touch Block instead of
“Pressed”. The robot will move until the Touch
Sensor is NOT pressed.

Make sure the Touch Sensor starts pressed
in, or the “Released” state will be detected
immediately, and the robot will go nowhere
(see “Already Pressed” on the previous page).

Touch 4: Forward until Touch
This step introduces the Motor On and Motor
Off modes of the Move Steering Block.

Motor On – Wait for Touch – Motor Off
form a common pattern that makes the
robot move forward until the Touch Sensor
is pressed, then stop. This pattern is
sometimes referred to as “Forward until”.

41

Touch Sensor

Mini-Challenge: Four Walls
Challenges students to make the robot
move to touch all four walls of an enclosed
rectangular space.

The desired behavior can be thought of as
“Forward until Touch (the wall), then turn”
four times. Backing up prior to turning may
help to avoid getting caught on the wall.

Students with prior programming experience
may know that a Loop Block would be helpful
here; it is up to you to decide whether it is
allowed at this time.

Touch 4 (continued)

Touch 5: Touch Sensor Review
Expanded explanations for both in-video
programs and a sample solution for the mini-
challenge can be found on this page.

42

Touch Sensor

Arm Position Challenge

This step lays out the details for the Arm
Position Challenge.

This challenge involves more physical
construction than programming, as students
will need to find a way to position the
Touch Sensor so that it can detect the Arm
reaching the top of its motion.

Students should be allowed limited freedom
to modify the robot’s arm or add extensions
during this Challenge, but should not need to
modify or disassemble the driving base.

A concept picture of one possible layout is
shown on the page, but no specific building
instructions are provided: students should
work to complete a design on their own.

Arm Position Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

43

Sensors > Move Until Near Chapter
In Move Until Near, students program a robot to wait until its Ultrasonic Sensor
detects an object within a certain “threshold” distance before proceeding with other
commands. This is combined with Motors On and Motors Off to produce a Forward
Until behavior parallel to the one constructed using Touch in the previous chapter.

Key Concepts: Ultrasonic Sensor, Threshold Value, Forward Until Pattern

 ► Ultrasonic 1: Introduction to Sensors
Introduces the real-world robot (Hexarotor), and the challenge modeled after it
(Maze Challenge)

 ► Ultrasonic 2: Robot Config
Contains building and setup instructions for the rest of the chapter

 ► Ultrasonic 3: Wait for Near
Uses the Wait for Near Block to make a robot wait for the Ultrasonic Sensor to
detect an object closer than the threshold value before continuing

 ► Ultrasonic 4: Forward until Near
Combines Motor On and Motor Off commands with Wait for Near to make the
robot move forward until the Ultrasonic Sensor detects something nearby

 ► Ultrasonic 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► Maze Challenge
Requires students to program an Ultrasonic Sensor-based solution to a maze,
detecting distances from key walls to known when to turn.

Hints:

 ► All of the chapters in the Sensors unit follow the general pattern laid out in this
chapter: Introduction, Wait for (Sensor), Forward until (Sensor), Challenge.

Introduction to the
Ultrasonic Sensor Unit

44

Ultrasonic Sensor

Ultrasonic 1: Introduction
Introduces the Autonomous Hexarotor and
the Maze Challenge.

Ultrasonic 2: Robot Config
This chapter uses the driving base model,
plus a forward-facing Ultrasonic Sensor.

Sensors from the previous chapter can be
left on or removed as convenient, as long
as they do not interfere with the Ultrasonic
Sensor (i.e. are not within its “cone” of view).

45

Ultrasonic Sensor

Ultrasonic 3: Turning in Place
This step introduces the Ultrasonic Sensor
and Wait for Near Blocks. The Sound Block
is used also, as a way of indicating when the
sensor has been triggered.

Mini-Challenge: Threshold Value
Challenges students to alter the Threshold
value on their Wait for Near Block to trigger
at 10 cm, and at 100 cm.

Thresholds are a key concept in robotics
programming, because they allow programs
to easily make decisions based on sensor
readings that range over hundreds of
possible values (1 cm, 2 cm, 3 cm...). Rather
then write hundreds of different responses,
the robot simply responds to the number
being above or below the Threshold cutoff.

46

Ultrasonic Sensor

[Optional] Did You Know?:
How the Ultrasonic Sensor Works
A video animation showing how an
Ultrasonic Sensor uses sonar to calculate
the distance to an object.

[Optional] Try It!: Sound Sentences

Adding sounds within your program provide
excellent clues that alert you that a behavior
has just completed.

Focusing on the Sound Block, this Try
It! prompts students to string together
multiple blocks (saying different words)
into a sentence.

Ultrasonic 3 (continued)

[Optional] Try It!: Sensor Change Mode

Prompts students to try using the Change
mode to wait for a change in Ultrasonic
values, rather than a value above or below
below a particular threshold (as it does in
Compare mode).

Try It!: Missing Object Alarm

Prompts students to try using Greater Than
Threshold instead of Less Than Threshold.
This is analogous to Wait for Release instead
of Wait for Pressed.

47

Ultrasonic Sensor

Ultrasonic 4: Forward Until Near
This step guides students through a Forward
Until behavior that uses the Ultrasonic
Sensor to stop when the robot gets close to
a wall (Ultrasonic Sensor value is below a
certain distance threshold).

This is analogous to Forward Until Pressed
in the Touch Sensor unit.

Mini-Challenge: Backward Until Far
Challenges students to adapt their behavior
to move backwards until the robot is a certain
distance away from an obstacle.

This activity is directly analogous to the
“Forward Until Release” mini-challenge in the
previous chapter, except that the robot needs
to back up so that it gets farther from the wall
(rather than continuing to get nearer).

48

Ultrasonic Sensor

Ultrasonic 5: Ultrasonic Review
Expanded explanations for both in-video
programs can be found on this page.

49

Ultrasonic Sensor

Maze Challenge

This step lays out the details for the Maze
Challenge. Students should work in their
teams to complete the challenge objectives.

The route show in the picture is the only real
route to the goal. However, certain walls are
allowed to move, or even be removed (see
PDF instructions).

The robot must use the “guaranteed” walls
to find its way through the maze without
touching any walls.

Maze Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

50

Introduction to the
Gyro Sensor Unit

Sensors > Turn for Angle Chapter
In Turn for Angle, students program a robot to turn until its Gyro Sensor detects a
heading change greater than a certain “threshold”. This is the same pattern used
with Forward Until Touch and Forward Until Near, but with turning.

Due to the nature of the Gyro Sensor, and of turning motion in general, a small
amount of “overshoot” in the turn will occur. The programming in this lesson is
broken into two steps to expilcitly address and accommodate this phenomenon.

Key Concepts: Gyro Sensor, Accommodating Sensor Error

 ► Gyro 1: Introduction to Sensors
Introduces the real-world robot (Autonomous Golf Course Mower), and the
challenge modeled after it (Mower Challenge)

 ► Gyro 2: Robot Config
Contains building and setup instructions for the rest of the chapter

 ► Gyro 3: Turn to Angle (Part 1)
Uses a variant of the Forward Until Pattern that turns instead of moving straight,
and uses the Gyro Sensor to detect the change in heading. Program will work,
but not be as accurate as desired.

 ► Gyro 4: Turn to Angle (Part 2)
Discusses physical factors that contribute to the inaccuracy of the original motion,
and strategies to mitigate the issue.

 ► Gyro 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► Mower Challenge
Requires students to program a Gyro Sensor-based behavior that will drive the
robot over all parts of a rectangular surface, even if it loses traction partway
through a turn.

Hints:

 ► The Gyro Sensor, like all real-world devices, is imperfect. This lesson uses that
imperfection as a learning opportunity.

51

Gyro Sensor

Gyro 1: Introduction
Introduces the Autonomous Golf Course
Mower and Challenge

Gyro 2: Robot Config
This chapter uses the driving base model,
plus a Gyro Sensor.

Sensors from the previous chapter can be
left on or removed as convenient.

52

Gyro Sensor

Gyro 3: Turn for Angle (Part 1)
This step introduces Turn for Angle in the
way that it would be expected to work,
following the Forward Until pattern.

Due to a number of unavoidable physical
factors, the robot will noticeably “overturn”
the target angle. This phenomenon is
addressed in the next step.

Gyro 4: Turn for Angle (Part 2)
This step discusses the reasons for the
seemingly strange behavior of the Gyro
Sensor in the previous step, and how this
can lead to a workaround (and what a
workaround is, compared to a solution).

53

Gyro Sensor

Try It: Left Turns
Prompts students to try using the Gyro Sensor
to perform a left turn.

Since the Wait For Gyro Block is in Change
mode, left and right turns both work – going 90
degrees in either direction is still a “change”.
This is not true in Compare mode, however, as
Compare mode uses compass headings that
will go negative if the robot turns left (and thus
reach -90, not 90).

Mini-Challenge: Rectangle Box

Challenges students to make the robot run
around a rectangular (or square) object,
using the Gyro Sensor to make each turn.

As with most mini-challenges, this task is
very closely related to what students will be
expected to do during the Challenge.

Gyro 4 (continued)

[Optional] How the Gyro Sensor Works
Explanation of the physical principle of
operation of the Gyro Sensor.

54

Gyro Sensor

Gyro 5: Review
Sample solutions and explanations for both
mini-challenges can be found on this page.

55

Gyro Sensor

Mower Challenge

This step lays out the details for the Mower
Challenge. Students should work in their
teams to complete the challenge objectives.

The “mud” zones (red squares) are designed
to make Wheel Rotations-based solutions
impossible. The robot should be picked up,
held briefly in the air (with the wheels still
spinning), then placed back down when the
robot turns on top of a mud patch.

The mud zones are positioned so the robot
will have to turn while on top of at least one.

If you have a game board surface that erases cleanly,
the eraser version of the board may work better. If
not, use the loose-parts version, but make allowances
for a large number of parts rolling onto the floor.

Mower Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

56

Introduction to the
Color Sensor Unit

Sensors > Move Until Color Chapter
In Move Until Color, students program a robot to wait until its Color Sensor detects
an object of a certain color before proceeding with other commands. This is
combined with Motors On and Motors Off to produce a Forward Until behavior
parallel to the ones using Touch and Ultrasonic Sonar in the previous chapter.

Key Concepts: Color Sensor, Forward Until Pattern

 ► Color 1: Introduction to Sensors
Introduces the real-world robot (Autonomous Motor Vehicle), and the challenge
modeled after it (Traffic Light Challenge)

 ► Color 2: Robot Configuration
Contains building and setup instructions for the rest of the chapter

 ► Color 3: Wait for Green
Uses the Wait for Color Block to make a robot wait for the Color Sensor to detect
a green object in front of it before moving

 ► Color 4: Forward until Red
Combines Motor On and Motor Off commands with Wait for Color to make the
robot move forward until the Color Sensor detects a red object

 ► Color 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► Traffic Lights Challenge
Requires students to program a robot to move through three traffic signals, each
of which may be red or green at random

Hints:

 ► The main programming pattern in this chapter is very similar to the previous
chapters, but the logical complexity of the Challenge solution is higher. Students
must continue improving their understanding of the.ways in which behaviors
relate, to produce the best (and simplest) possible solution

57

Color Sensor

Color 1: Introduction
Introduces the Autonomous Motor Vehicle
and the Traffic Light Challenge.

Color 2: Robot Config
For the video portion of this chapter, the
Color Sensor will be mounted in the default
location. It will need to be moved to the arm
for the Challenge, as it will collide with the
traffic signal otherwise.

If this causes an issue, you can change the
rules of the Challenge to permit the student
to move the traffic signal out of the way
rather than moving the sensor to avoid it.

58

Color Sensor

Color 3: Wait for Green
This step introduces the Wait for Color
Block. This step is structurally similar to the
other Wait For behaviors – the Wait For
Color Block will wait until ANY ONE of the
selected colors is detected.

Try It! 1: No Color
The “No Color” option represents the state
where the Color Sensor is not getting a
reading from a surface in front of it.

Try It! 2: Port View Color Sensor Values

The Port View mode on the EV3 on-screen
menus don’t call colors by name. Instead,
they use the numeric codes shown next to
the numbers in the checklist.

59

Color Sensor

Mini-Challenge: Railroad Crossing
Instead of waiting for Green to go, Wait for
“No Color”.

[Optional] How the Color Sensor Works

The Color Sensor is actually three different
sensors: a Red Sensor, a Blue Sensor, and
a Green Sensor. By measuring the relative
amounts of red, green, and blue light that a
surface reflects, the sensor can tell the color
of the surface.

Color 3 (continued)

60

Color Sensor

Color 4: Forward until Red
This step adds the Motor On and Motor Off
commands to make a Forward Until behavior
like the ones from previous chapters.

Mini-Challenge: Forward to Stop Line
Face the Light Sensor down at the ground
to detect colored lines on the table surface.
This is a common use of the Color Sensor in
robotics competitions.

61

Color Sensor

Color 5: Color Sensor Review
Expanded explanations for the Wait for
Green program and the Forward to Stop
Line program can be found on this page.

Color 4 (continued)
Now try the challenge on other surfaces with
other colors!

62

Color Sensor

Traffic Signal Challenge

This step lays out the details for the Traffic
Signal Challenge. Students should work
in their teams to complete the challenge
objectives.

Teams will need to reposition the Color
Sensor to the robot’s arm so that it can
reach high enough to see the traffic signals,
and also move the sensor out of the way
afterward. If this is inconvenient, modify
the challenge rules to allow the signal to be
moved out of the way.

Traffic Signal Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

63

Introduction to Robot
Decisions - Loops

Decisions > Loops Chapter
In the Decisions Unit, students begin to work with Program Flow more directly. Loops
give programmers the ability to repeat commands; many students already know this.
However, the real power of Loops lies with the capability to decide whether to repeat
or not.

Key Concepts: Program Flow, Loops, Conditional Loops

 ► Loops 1: Introduction to the Container Handling Robot
Introduces the real-world robot (Container Handling Robot), and the challenge
modeled after it (Container Handling Challenge)

 ► Loops 2: Robot Configuration
Contains building and setup instructions for the rest of the chapter

 ► Loops 3: Looped Movement
Uses a simple (infinte) loop to make the robot move back and forth repeatedly

 ► Loops 4: Loop with Count Control
Sets the Loop to repeat only a set number of times

 ► Loops 5: Loop with Count Control
Uses a Sensor to decide whether the Loop repeats or not at the end of each pass

 ► Loops 6: Review
Explains sample solutions to mini-challenges from this chapter

 ► Container Handling Challenge
Requires students to use loops and sensor control to program a robot to pick up
a number of objects and move them back to a starting zone

Hints:

 ► The concept of repeating is simple, but it is important to begin building a broader
mental model of Program Flow now so students can understand how Loops
relate to Switches and Switch-Loops in the next chapters

64

Decisions - Loops

Loops 1: Introduction
Introduces the Container Handling Robot, the
Container Handling Challenge, and Loops.

Loops 2: Robot Config
The robot for this chapter uses the
Ultrasonic Sensor, and will eventually add
the Color Sensor in the Challenge.

65

Decisions - Loops

Loops 3: Looped Movement
This step introduces Loops. The default loop
sends Program Flow back to the beginning
of the Loop every time it reaches the end
(i.e. repeats infinitely).

The Program Flow-based explanation is
used because it explains the action of Loops
(and later Switches) in a systematic way that
avoids common misconceptions.

Mini-Challenge: Square Lap 1
Challenges students to modify the
commands inside the loop so the robot
makes its way around a square box.

The key to this challenge lies in the
symmetry of the box: you can move the
same distance for each side, and turn 90
degrees after each movement.

66

Decisions - Loops

Loop 4: Loop with Count Control
This step introduces the idea that Loops
can end, by using loops that only repeat a
certain number of times.

Loops that only repeat sometimes are called
Conditional Loops. In this step, “sometimes”
is based on the loop count; in the next step,
a Sensor will make the decision.

This program builds on the program from the previous
step. The “Starting Program” linked to the right of the
video provides a working copy of the previous step’s
program if needed.

Try It!: Other Counts
Prompts students to use a different number
of Counts in the Loop.

Mini-Challenge: Square Lap 2
Instead of looping forever, students are
challenged to limit the lap-running behavior
to a single full lap (4 sides of the box).

67

Decisions - Loops

Loops 5: Loop with Sensor Control
This step continues modifying the program
from the previous steps by using a Sensor to
decide whether to repeat or not.

There is a common misconception that a
“Sensor-Controlled” Loop will continuously
monitor the sensor and end the loop
immediately when, for example, a threshold
is reached.

However, that is not the case; the Sensor
is only checked while the repeat-or-end
decision is being made at the end of the
Loop, not while the commands inside the
Loop are running.

This program builds on the program from the previous
step. The “Starting Program” linked to the right of the
video provides a working copy of the previous step’s
program if needed.

Try It!: Other Sensors
Prompts students to try using the Touch
Sensor to end the Loop instead of the
Ultrasonic Sensor.

The same rules about the timing of sensor
responsiveness still apply.

Mini-Challenge: Square Lap 3

Challenges students to adapt their Square
Lap program to end based on an Ultrasonic
Sensor value.

The program will only stop for obstacles that
are visible to the robot when the Loop ends
(typically just after turning).

68

Decisions - Loops

Loops 6: Loop Review
Sample solutions and explanations for the
mini-challenges in this chapter can be found
on this page.

69

Decisions - Loops

Container Handling Challenge

This step lays out the details for the
Container Handling Challenge. Students
should work in their teams to complete the
challenge objectives.

As noted near the bottom of the page, the
easiest method of solving the problem is to
use Forward Until Near to get to the next
object, Reverse Until Red to return to the
starting area, and a Loop to repeat the
behavior for all four containers.

Container objects should be large enough for the
Ultrasonic Sensor to detect, but thin enough for the
arm to close around. Erasers, toilet paper tubes, or
cuttings from cardboard boxes or packing materials
can all be good candidates. Be wary of sound-
absorbing materials, however, which the Ultrasonic
Sensor cannot detect.

Container Handling Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

70

Decisions > Switches Chapter
Switches and Loops have very different effects on Program Flow: whereas Loops
could send Flow back to repeat commands, Switches force the robot to choose
between alternative paths in the code. Like Conditional Loops, they typically make
this decision based on Sensor feedback.

Switches are seldom seen alone in robotics programming, because robots very
rarely make isolated, one-time decisions. It is far more common to put a Switch
inside a Loop, to allow repeated decision-making.

Key Concepts: Program Flow, Switches, Repeated Decisions (Switches in Loops)

 ► Switches 1: Introduction to the Strawberry Plant Sorter
Introduces the real-world robot (Strawberry Plant Sorter), and the challenge
modeled after it (Strawberry Plant Challenge)

 ► Switches 2: Robot Configuration
Contains building and setup instructions for the rest of the chapter

 ► Switches 3: Move If Clear
Uses a single Ultrasonic Switch to make a decision: move forward if there is no
object nearby, or turn to the side if there is

 ► Switches 4: Looped Decision
Use a Loop to repeat the Switch-based behavior, allowing the robot to solve
certain simple mazes

 ► Switches 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► Strawberry Plant Challenge
Requires students to use repeated decisions and sensors to program a robot to
sort a number of colored objects and move them back to a starting zone

Hints:

 ► Switches do not repeat unless a Loop makes them repeat (the same way a Loop
makes any block repeat)

Introduction to Robot
Decisions - Switches

71

Decisions - Switches

Switches 1: Introduction
Introduces the Strawberry Plant Sorter, the
Strawbery Sorter Challenge, and Switches.

Switches 2: Robot Config
The robot for this chapter uses the
Ultrasonic Sensor, and will eventually add
the Color Sensor in the Challenge.

72

Decisions - Switches

Switches 3: Move If Clear
This step introduces Switches, using the
Ultrasonic Sensor to choose between
moving straight (if no object is in the way), or
turning once (if an object is in the way).

The Program Flow-based explanation is
used because it explains the action of
Switches in a systematic way that avoids
common misconceptions, that also explains
their relation to Loops.

Mini-Challenge: Color Sensor
Compare Switch
Challenges students to use a Color Sensor
to decide whether to turn left or right.

This behavior is directly reusable in the
sorting task in the Chapter Challenge.

73

Decisions - Switches

[Optional] Mini-Challenge:
Color Name Reader
Challenges students to investigate the
Measure mode of the Color Sensor Switch,
which supports multiple branches so the robot
can act on several different colors differently,
rather than having only two choices.

Switches 3 (continued)

74

Decisions - Switches

Switches 4: Looped Decision
This step places the Switch in a more natural
context: inside a Loop.

A single decision often occurs too quickly to
be useful (or even noticeable). Repeating the
decision gives the robot has the opportunity
to perform more meaningful behaviors.

Most robot decision-making takes place in a
structure resembling this one.

Try It!: Maze Runner
Prompts students to try running their straight-
or-turn looped decision behavior in a maze.
The robot will go straight whenever it can,
and turn when there is a wall in front of it.

Students will need to adjust the distances
traveled in the program to match the “tiles” in
the maze.

The walls in this maze should be raised walls (as
opposed to marked on the ground). Use textbooks or
other free-standing obstacles if possible. If “thin” walls
are not available, you can use boxes and push the
“top” row back one tile to create a “C”-shaped maze.

Mini-Challenge: Smarter Decisions

Challenges students to add features to
different parts of their program.

Students must think about where to add each
command, which focuses attention on the
role that each part of the program plays.

75

Decisions - Switches

Switches 6: Switches Review
Sample solutions and explanations for the
mini-challenges in this chapter can be found
on this page.

76

Decisions - Switches

Strawberry Plant Challenge

This step lays out the details for the
Strawberry Sorter Challenge. Students
should work in their teams to complete the
challenge objectives.

The robot must sort four plants to the correct
side based on each plant’s color. The good-
or-bad decision should immediately suggest
a Switch-based decision, and the fact that
there are four objects should suggest a
Repeated Decision (Switch in a Loop).

The same objects used in the Loops Chapter’s
Container Handling Challenge can be used for this
Challenge. Add colored paper around or on the sides
of each object.

Strawberry Plant Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

77

Introduction to Robot
Decisions - Switch-Loops

Decisions > Switch-Loops Chapter
Switch-Loops are actually just Switches inside Loops, the same pattern we called
Repeated Decisions in the last chapter. However, if a decision-response cycle is
repeated quickly enough, it approaches a “continuous” level of responsiveness.

By analogy, a movie looks like it’s moving smoothly – “continuously” – even though
it’s really made of still images, because many frames go by very quickly (24 per
second). If a robot updates its motor powers very quickly in response to sensor
feedback, the robot looks like it’s responding “continuously”.

Key Concepts: Program Flow, Rapidly Repeated Decisions = “Continuous” Control

 ► Switch-Loops 1: Introduction to the Autonomous Tractor
Re-introduces the real-world robot (Autonomous Tractor), from the Turning
Chapter, and the new challenge modeled after it (Obstacle Orchard Challenge)

 ► Switch-Loops 2: Robot Configuration
Contains building and setup instructions for the rest of the chapter

 ► Switch-Loops 3: Obstacle Detection Failures
Shows two “intuitive” attempts to add obstacle detection using existing
techniques, both of which fail

 ► Switch-Loops 4: Obstacle Detection
Uses rapid Repeated Decisions to create a working Obstacle Detection program

 ► Switch-Loops 5: Review
Explains sample solutions to mini-challenges from this chapter

 ► Obstacle Orchard Challenge
Requires students to use Obstacle Detection to complete the Orchard Challenge
with the added element of obstacles

Hints:

 ► Switches inside Loops were already used in the last chapter (as “Repeated
Decisions”). The important distinction in this chapter is that “Continuous”
behaviors require a rapidly-repeating loop, which the “Discrete” movement
responses in the previous chapter did not maintain.

78

Decisions - Switch-Loops

Switch-Loops 1: Introduction
Re-introduces the Autonomous Tractor, and
introduces the Obstacle Orchard Challenge,
and Switch-Loops.

Switch-Loops 2: Robot Config
The robot for this chapter uses the
Ultrasonic Sensor.

79

Decisions - Switch-Loops

Switch-Loops 3: Failures
This step deliberately walks through two
programs that do NOT work as a set up for
the program that DOES (in the next step).

Students often have strong preconceptions
that the methods shown in this video should
work with the right tweaks, when in fact, both
methods are fundamentally unworkable.

This video attempts to move students
toward greater acceptance of that fact, and
openness toward the new approach.

80

Decisions - Switch-Loops

Switch-Loop 4: Obstacle Detection
This step introduces the idea that large
behaviors can be built up from repeated
small behaviors, and that a Switch inside a
Loop can create this effect in code.

The rapid repetition of the Switch and Loop
decisions allows multiple sensors to be
checked, as neither one “blocks” the other
by holding up the program flow.

Since the behavior relies on the Loop to
continue running, exiting the Loop ends
the behavior. Consequently, the sensor
condition on the Loop (Motor Rotations > 4
in this case) determines when the behavior
ends. The sensor in the Switch determines
what the robot does in each given instant
until then.

This, of course, only works so long as the
program is able to loop rapidly; it would not
be able to check the Loop end condition if
another block were holding up program flow!

Mini-Challenge: Obstacle Detecting
Move Until Black Line
Challenges students to add a Color Sensor
to the EV3 and modify the program so that it
ends when the robot reaches a black line.

Since the sensor on the Loop determines
when the behavior ends, setting the Loop
condition to Color Sensor > Color > Black
means it will end when the robot reaches the
black line.

81

Decisions - Switch-Loops

Switch-Loop 5: Review
A sample solution and explanation for the
mini-challenge in this chapter can be found on
this page.

82

Decisions - Switch-Loops

Obstacle Orchard Challenge

This step lays out the details for the
Obstacle Orchard Challenge. Students
should work in their teams to complete the
challenge objectives.

This Challenge board is set up identically
to the Orchard Challenge from the Turning
chapter, but contains obstacles that can be
randomly placed. The obstacles can be the
same as the ones used in the Container
Handling or Strawberry Sorter Challenges.

Obstacle Orchard Challenge PDF
Detailed measurements for the board layout,
as well as instructions for setting it up, rule
details, and hints for solving the challenge
can be found in this printable document.

83

Introduction to Robot
Decisions - Line Follower

Decisions > Line Follower Mini-Chapter
Note: The terms “Line Following” and “Line Tracking” are used interchangeably in this chapter.

Line Following is actually just another application of the rapid repeated decisions
pattern introduced in Switch-Loops. Consequently, the Line Follower chapter actually
contains no new blocks or concepts – it is a new application of an existing idea.

As it is more practice and less new material, the Line Follower chapter is condensed
into two pages and two videos.

Key Concepts: Applying “Continuous Control” in a new situation, Line Tracking

 ► Line Tracking 1: Introduction to the AMTS
Introduces the real-world robot (Automated Material Transport System [AMTS])
and the new challenge modeled after it (Line Tracking Challenge). Also contains
the building and setup instructions for this chapter.

 ► Line Tracking 2: Line Tracking
Explains Line Tracking as a use of Repeated Decisions and walks through
a basic program that performs Line Tracking. Also lays out the Line Tracking
Challenge, which requires students to move a crate along a curved path.

Hints:

 ► Line Following is a useful option any time there are suitable floor markings,
including many robot competitions boards.

 ► Just as with Obstacle Detection, the Line Following behavior relies on the Loop’s
condition to know when to stop, and the Switch’s condition to decide what motor
commands to issue in any given instant.

84

Decisions - Line Follower

Line Tracking 1: Introduction & Config
Introduces the Automated Material Transport
System (AMTS), the Line Tracking Challenge,
and the Line Following/Tracking behavior.

This page also includes the building
instructions for this chapter.

85

Decisions - Line Follower

Line Tracking 2: Challenge
This step explains Line Tracking, which uses
the same Rapidly Repeated Decisions logic
used in Obstacle Detection.

The Challenge for this chapter is found
farther down this page.

Mini-Challenge: Line Track for Rotations
Challenges students to make the Line
Tracking behavior end after 4 rotations.
The same logic applies here that was
used to make Obstacle Detection end
after 4 rotations.

86

Decisions - Line Follower

Line Tracking Challenge PDF
Detailed measurements for the board layout, as well
as instructions for setting it up, rule details, and hints
for solving the challenge can be found in this printable
document.

Line Follower 3 (continued)

Students can greatly improve the performance of
the robot by modifying motor power levels.

The ratio of the left and right motor powers
determines the “sharpness” of the robot’s motion
(e.g. 75/25 follows the same course as 30/10).

High motor powers will make the robot move quickly
to save time, while lower ones will make it move
more slowly (but stay on the line better).

Best results are achieved by using multiple line
tracking behaviors back-to-back, with each one
having a different combination of motor powers.
Each can run for a set distance or length of time,
then end, allowing the next to run.

Challenge: Line Tracking Challenge
Challenges students to have the robot pick up a
crate and follow a complex line using a series of
line-tracking behaviors.

87

Final Challenge
Resources

Resources 1 : Flowcharts
The Flowcharts video .explains how a robot makes decisions. This video is designed
to introduce students to flowcharts.

Key Concepts: Problem Solving: Breaking Down large problems

Resource 2 : Iterative Design
The Iterative Design video gives students a process that they can use to solve their
programming problems.

Key Concepts: Building Up a solution with Iterative Design

Oftentimes, students’ first inclination when solving a problem that involves programming is to simply
sit down and start coding. This is generally counterproductive if the solution is not immediately
obvious – students are more likely to get lost than succeed if they do not “get their bearings” and pick
a sensible direction first. [NGSS: MS-ETS1, HS-ETS1-2]

Resources 3 : Project Planning
The Project Planning video .explains how important planning is when working in
teams.

Key Concepts: Problem Solving: Planning, Breaking Down large problems

Resources 4 : Engineering Process
The Engineering Process video .describes a logical and systematic way to solve
engineering projects.

 Key Concepts: Problem Solving: Planning, Breaking Down large problems

88

Final Challenge Resources

Final Challenge Resources 1
Flowcharts Video
The Flowcharts video .explains how a robot
makes decisions. This video is designed to
introduce students to flowcharts

Final Challenge Resources 2
Iterative Design Video
The Iterative Design video gives students
a process that they can use to solve their
programming problems.

89

Final Challenge Resources

Project Planning Video
The Project Planning video .explains how
important planning is; especially when working in
teams.

Final Challenge Resources 4
Engineering Process Video
The Engineering Process video .describes a
logical and systematic way to solve engineering
projects.

Final Challenge Resources 3

90

Final Challenge ResourcesSearch and Rescue Challenge

Search & Rescue Challenge

This step lays out the details for the final
Search and Rescue Challenge. Students
should work in their teams to complete the
challenge objectives.

This challenge unfolds in two stages, to
help students focus on breaking down the
problem and building up the solution.

Building Instructions
Students should be allowed to make minor
modifications to their robots during this
Challenge, although they should not be
necessary; all tasks can be completed with
the standard attachments as shown.

91

Final Challenge ResourcesSearch and Rescue Challenge

Search and Rescue Challenge PDF
Detailed measurements for the board layout, as
well as instructions for setting it up, rule details, and
hints for solving the challenge can be found in this
printable document.

Phase 2
In Phase 2, students work on the logic that decides
which of the four room-specific behaviors should
run, and at what times. It will then rely on the
existing, tested behaviors from Phase 1 (with small
modifications as necessary) to complete the room
task.

In the “iterative” model, this step builds upon the first step’s
behaviors, and instead focuses on choosing the right one at the
right time.

Search and Rescue Challenge (cont’d)

Phase 1
In Phase 1, students should focus on completing
the tasks found in each room separately, using a
separate program for each room.

In Phase 2, these individual behaviors will be
combined with additional logic that makes the correct
behavior run at the correct time, and repeats the
process to cover four rooms.

In the “iterative” model, this is the first step – the foundation
upon which the next steps will be built.

Table of Contents

92 Unit Worksheets
93 Movement Straight Question and Answer

Key
95 Movement Turning Question and Answer

Key
97 Sensors Touch Question and Answer Key
99 Ultrasonic Sensor Question and Answer

Key
101 Gyro Sensor Question and Answer Key
103 Color Sensor Question and Answer Key
105 Decisions Loops Question and Answer

Key
107 Decisions Switches Question and Answer

Key
109 Decisions Switch Loops Question and

Answer Key
113 Decisions Line Follower Question and

Answer Key
115 Robot Engineering Question and Answer

Key

117 Robot Programming
Worksheets

117 What are Behaviors?
118 What are Flowcharts?
119 What is Pseudocode?
120 What is a Robot?

121 Engineering
Handouts

121 Engineering Process Handout
122 Engineering Process Steps
123 Using Gantt Charts
124 Using PERT Charts
125 Introduction to the Engineering Journal
126 Using the Engineering Journal

128 Rubrics
128 Student Work Habit Evaluation Rubric
129 Example Writing Rubric
130 Student Presentation Rubric
131 Design Review Rubric
132 Proposal Writing Rubric

133 Addendum:
Bonus Materials

133 Data Logging Investigation
138 Data Wires and Logic

Reproducibles

92

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

93

Moving Straight Reflection Question
In what ways are the following two programs alike? In what ways are they different?
Some smaller differences are circled in red to make them more noticeable.

Program 1:

Program 2:

Please write your answer below:

Movement - Straight

94

Moving Straight Reflection Answer Key
Both programs will cause the robot to move 2 rotations when they are
finished, but Program 1 will do it in a single motion, while Program 2
will do it in two movements, stopping after one rotation (halfway) then
continuing on.

Response Rubric (5 points):

0 points 1 point 2 points 3 points
Content
Understanding:
Relationship
between program
commands and
robotic movement

Identifies that the
robot moves in
both cases, but
does not provide
relevant details

Identifies that the
programs perform
a different number
of movements OR
that they end up
going the same
distance (but not
both)

Identifies that
the programs will
perform a different
number of
movements, but
end up going the
same distance

--

Communication:
Student response
uses effective
writing techniques
to convey
meaning clearly

Response
is missing,
incoherent,
or obscures
meaning beyond
recognition

List-type
response, or uses
inappropriate
connective
language that
detracts from the
intended meaning

Readable and
cogent response
that answers the
question clearly.
May include minor
grammatical
issues that do
not interfere with
meaning.

Response is
well-written
and conveys
meaning clearly,
using connective
language
efficiently to
enhance meaning
(e.g. but…while)

Movement - Straight

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

95

Movement - Turning

Turning Reflection Question
Shawna believes her robot is broken. She built the REM (Robot Educator Model)
robot, and wrote the following program to make the robot turn its body one-quarter
(0.25) of the way around:

However, it does not actually turn that much when it is run. Should Shawna’s robot
be replaced because it is broken? Explain why or why not.

Please write your answer below:

96

Movement - Turning

Turning Reflection Answer Key
No, the robot should not be replaced for the reason claimed. It is a
common student misconception that the quantity entered in the Move
Block is the number of turns that the robot’s body will produce – 0.25
(i.e. 25%) in this case.

In reality, the number entered in the “Rotations” blank sets the number
of motor rotations that the robot will perform. 0.25, therefore, means that
the robot will move in a turning motion until its wheels have completed
0.25 rotations. The exact rate at which motor rotations produce robot
body rotation depends on the robot’s gearing and the size and physical
arrangement of the wheels. On the standard REM design, 0.25 motor
rotations corresponds to about 1/8th of a full turn.

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

97

Jacqueline’s lunch has gone missing for the fourth time this month. She is convinced
that someone is sneaking food out of her lunch box during breaks, but she can never
find the person who is doing it.

Explain how she might be able to use a Touch Sensor and EV3 to construct a device
that could help Jacqueline catch the lunch box thief! Be sure to describe both the
mechanical and programming aspects of your solution as appropriate.

Please write your answer below:

Sensors - Touch

Touch Sensor Reflection Question

98

Example solution #1:

Place an EV3 inside the lunch box with a Touch Sensor positioned
so that the lid of the box presses in the Touch Sensor contat when
closed. Program the EV3 so that it Waits for Release (Wait for Touch >
Release) and then plays a sound at maximum volume. As soon as the
lid is opened, the robot will alert everyone nearby! The program would
also need to wait a few seconds at the beginning, to allow Jacqueline to
close the box without triggering the alarm immediately.

Example solution #2:

Place an EV3 with a Touch Sensor inside the lunch box, and point the
Touch Sensor so that it will fall against the inside of the box and be
pressed when the box is picked up or opened. Program it to Wait for
Touch then drive back and forth repeatedly. As soon as someone tries to
move the lunch box, the robot will move around inside it, creating a lot of
noise and getting everyone’s attention.

Sensors - Touch

Touch Sensor Reflection Answer Key

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

99

Do you agree or disagree with the following statement? Explain why.

“I think every car should have an Ultrasonic Sensor installed on it to prevent
accidents. Any time the sensor detects an object less than 10 feet in front of the car,
it would hit the brakes and stop the engine.”

Remember to give reasons for your position.

Please write your answer below:

Ultrasonic Sensor Reflection Question

Sensors - Ultrasonic

100

It is not important whether the student chooses to agree or disagree with
the position. The important part is whether the student gives reasons
that are valid, and support the student’s conclusion.

For instance, a student might reason that because the Ultrasonic Sensor
cannot distinguish between a bird and another car, it would try to stop in
both cases, potentially creating an even more dangerous situation (e.g.
if it happens in heavy traffic). This student would therefore disagree with
the statement.

On the other hand, a student might reason that if EVERY car had
distance-sensing technology, it could actually help to avoid pile-up
accidents, because the detector would react much more quickly than a
human driver would. Thus, universal adoption would be critical, and so
the student would agree with the original statement.

Other likely areas that students might base their arguments around
include: 10 feet being a bad distance (too far, can’t park in a small
space; too close, won’t stop in time at high speeds), the idea that
sensor-assisted driving can help in difficult driving conditions or if a
driver is intoxicated, that the cost of installing sensors in every car would
be too high (or that it might not be possible for some older cars), and
many more.

Ultrasonic Sensor Reflection Answer Key

Sensors - Ultrasonic

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

101

Sensors - Gyro

One of the EV3 Large Motors in the class is having trouble with its built-in Rotation
Sensor, and there is no spare motor available. Alison suggests that a Gyro sensor
could be used as a substitute by attaching it to the robot’s wheel so that the sensor
spins around as the wheel turns. Do you think this could work? Explain why or why
not.

Please write your answer below:

Gyro Sensor Reflection Question

102

Sensors - Gyro

A correct answer to this question should point out both the
theoretical possibility of the suggestion working, and one or more
factors that could limit its effectiveness in the real world.

In principle, the Gyro Sensor can do what Alison suggests, as long as
it is oriented in the correct way (so that it spins with the wheel, and the
arrows printed on top of the Gyro are lined up with that spinning). The
Gyro Sensor detects rotation, and the turning of the wheel is a form of
rotation.

However, this idea runs into several practical limitations. For instance,
the Gyro Sensor is not tuned for rapid movement, so accelerating or
decelerating too quickly could cause problems. The Gyro Sensor also
has the same latency (delay) effect you encountered while measuring
turning. There is a potential issue with the sensor’s cable becoming
twisted during driving. Finally, the Gyro Sensor simply cannot be as
mechanically precise as a Rotation Sensor built into the motor itself.

Gyro Sensor Reflection Answer Key

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

103

Sensors - Color

Suppose you turn off the lights and the close the windows, so that the room is
completely dark. Should a robot with a downward-facing Color Sensor still be able to
find a black line on a white board? Explain why the darkness will or will not matter.

Please write your answer below:

Color Sensor Reflection Question

104

Yes, the robot will most likely find the line without too much trouble,
because the Color Sensor shines its own light on the table surface,
rather than relying on ambient (room) light.

The operating principle of the sensor is that it shines three colors of light out
from the bulb – Red, Green, and Blue – and measures the amounts of Red,
Green, and Blue light that reflect back into the clear collector lens. Since the
sensor provides its own light source, external lighting is less important that it
might be otherwise.

Color Sensor Reflection Answer Key

Sensors - Color

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

105

Philip plans out a program for a window-washing robot on a large, tall building:

1. Start at the first window on the ground floor

2. Wash the window

3. Go to the next window on the same floor

4. Repeat steps 2 and 3 until all the windows on that floor are washed

5. Move back to the first window on the floor

6. Go to the next floor up

7. Repeat steps 2 through 6 until all floors are washed

Assuming that it knows how to do all the individual steps (such as wash a given
window), will this robot be able to complete the task of washing all the windows on a
single side of the building? If not, what will happen instead?

Please write your answer below:

Loops Reflection Question

Decisions - Loops

106

Yes, the robot should be able to complete its task using this set of
instructions. The instructions shown are an example of “pseudocode”,
a helpful programming practice where programmers lay out the steps of
their programs in plain English before translating them into code.

Picture the side of the building as a “grid” of windows. Step 1 ensures
the robot starts in a “corner” of the grid. Steps 2 and 3, repeated by Step
4, make the robot wash all the windows in a “row” – one floor of the
building. Step 5 then goes back to the beginning of the row, Step 6 goes
to the next row, and Step 7 makes the robot repeat the entire process to
wash the new floor.

It may be helpful to visualize the process as resembling a typewriter –
the type head types one letter at a time (Step 2), advancing one space
after each (Step 3). This repeats (Step 4) until the type head reaches the
end of the line, then you must reset the type head to the beginning of the
line (Step 5), advance the paper (Step 6), and repeat the process for the
new line (Step 7).

Loops Reflection Answer Key

Decisions - Loops

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

107

The following is an example of pseudocode, a plan for a program laid out in plain
English for planning purposes:

1. If there is an object less than 25 cm away, turn left 90 degrees

2. Move forward for 18 rotations

3. Turn left 90 degrees

4. If there is an object less than 50 cm away, play the sound “Detected”

Line 4 of this program uses an Ultrasonic Sensor to decide whether to play a
sound or not. If you were to write this specific line of code in the EV3 Programming
Software, would it make sense to use a Loop, a Switch, or something else (like
a Wait, or a combination of a Loop and a Switch) to make this decision happen?
Explain your choice.

Please write your answer below:

Switches Reflection Question

Decisions - Switches

108

Line 4 in the program is a one-time decision, and would be best
implemented using a Switch. A Loop is not appropriate because the
decision does not affect whether anything is repeated, and a Wait would
be inappropriate because the decision is instantaneous one way or the
other (play the sound or don’t; there is no waiting involved).

Switches Reflection Answer Key

Decisions - Switches

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

109

Do you believe the following claim is correct or incorrect? Explain why.

“If you’re using a switch-loop, it doesn’t matter which sensor is checked by the
switch, and which is checked by the loop. As long as you have them both selected,
it’s the same thing.”

Remember to give reasons for your position.

Please write your answer below:

Switch-Loops Reflection Question

Decisions - Switch-Loops

110

The claim is incorrect. While both Loops and Switches can use
sensors to make a decision, they do different things with the result.
The sensor attached to the Loop decides whether the switch-loop
behavior continues repeating or not. The sensor attached to the Switch
determines what action the robot will perform (e.g. turn left or turn right)
in each pass through the loop. These roles are not interchangeable, and
therefore neither are the sensors attached to them!

Loops send the program flow back to an earlier point in the program,
while Switches choose between different lines of code to run.

Switch-Loops Reflection Answer Key

Decisions - Switch-Loops

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

111

Robots can make millions or even billions of decisions every second because their
processors can read and run millions of commands per second. Faster processors
can process more commands and make more decisions in the same amount of time,
but often cost more and consume more energy.

If you were designing a safety system for forklifts that uses a gyro sensor to detect
when the driver is turning too sharply, how important would the system’s processor
speed be? Give an example of what might happen if you used a processor that was
too slow.

Please write your answer below:

Repeated Decisions Reflection Question

Decisions - Switch-Loops

112

Since it is a safety system, the rollover detector would most likely be
using some form of continuous monitoring to watch the gyro sensor and
send either driver alerts or motor corrections as appropriate.

In this chapter, students learned that “continuous” behaviors are actually
illusions created by making decisions rapidly and repeatedly. The
faster the robot can make these decisions, the faster it can respond
to changes. A fast processor can therefore monitor the gyro more
frequently, and thus be more responsive to any readings that might
indicate danger. If the processor were too slow, it would not sense and
respond quickly enough to any potential danger. Therefore, the speed
of the processor is critical to the functioning of this safety system.

Students might note that there is, in fact, a tradeoff to high processing
power, in the form of increased expense, heat, and bulk, all of which
might make the system less practical if not balanced against the
responsiveness requirements of the design.

Repeated Decisions Reflection Answer Key

Decisions - Switch-Loops

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

113

In what way or ways is the programming logic behind Line Following similar to
Obstacle Detection? How do they differ from the programming logic in Forward Until
Dark or Forward Until Near?

Please write your answer below:

Line Follower Reflection Question

Decisions - Line Follower

114

Line Following and Obstacle Detection are nearly identical in their
program flow patterns. Each uses a Loop inside a Switch (sometimes
called a Switch-Loop) as its main structure, and relies on rapidly-
repeating decisions to make “continuous” adjustments to the robot’s
motor output.

In the case of Obstacle Detection, the robot uses an Ultrasonic Sensor
in the Switch to decide whether it is appropriate to stop or run the motors
in a given instant, and another sensor (typically Rotations) in the outer
Loop to make the behavior stop after traveling to the desired point.

Line Following uses a Light Sensor in the Switch to choose between
forward-left and forward-right movement in a given instant, based
on whether the robot is on or just off the line. A sensor (again, often
Rotations) in the outer Loop makes the behavior stop after the robot has
reached the desired point.

Both of these behaviors are markedly different from the “Forward
Until” behaviors, which issue a single motor command (Motors On),
then freeze the program flow inside the Wait Block until its criteria are
met. No further commands can be processed – no sensor values read,
nor motor responses issued – until the Wait Block has completed.
In contrast, the Switch-Loop behaviors are constantly processing
instructions, monitoring sensors, and adjusting motor outputs as they
cycle through the blocks in the Loop and Switch, allowing them to
remain “continuously” responsive while running.

Line Follower Reflection Answer Key

Decisions - Line Follower

Teacher note - The reflection question at the end of each chapter could be handled as a written
student homework assignment or could be an in-class discussion. It is at the discretion of the teacher
how he/she handle the reflection question in their classroom.

115

You are designing a trash container-emptying robot to help your school. The robot
must automatically pick up the trash from the various containers around campus and
take everything to a large dumpster. Consider the following two designs:

 ► Design A uses timing and rotation sensors to navigate between containers
everywhere, and costs much less

 ► Design B uses a combination of Touch, Color, Gyro, and Ultrasonic sensors to
perform its task, but costs much more

Write a short recommendation for one of the two options above. Support your
answer through the use of examples, either of real-world robots, or of your own
robotics experience. When choosing a position, be sure to take into account what
qualities your school might find most valuable and important.

Please write your answer below:

Robot Engineering Reflection Question

Robot Engineering

116

Engineering products like robots are always designed to meet certain
needs. Therefore, student responses should focus on which of the two
options better meets the needs of the school and the needs of the task.

Here are some common themes around which students might base their
recommendations:

Favoring Design A (no sensors)

• Schools have very limited budgets, and therefore cost is an
overriding factor

• A response favoring Design A will need to explain ways in which
the robot can be kept safe and reliable through an organized
environment

• For example, the robot can run mostly at night, and therefore
capabilities related to safety (such as obstacle avoidance) are
not needed

Favoring Design B (sensors)

• Sensors like the Gyro Sensor can allow the robot to navigate
longer without getting off-course, increasing its reliability

• Sensors like the Touch Sensor and Ultrasonic Sensor can help
the robot collect trash from containers that may be slightly out of
place, increasing its reliability

• Sensors like the Ultrasonic Sensor can keep the robot from
bumping into people or other unexpected objects, increasing the
robot’s safety

• A response favoring Design B will need to explain how these
additional capabilities justify the additional cost

In both cases, students should make claims about the robots and
support them using examples from real life or from their experiences
with the LEGO robots. Claims not supported by evidence should not be
accepted.

Robot Engineering Reflection Answer Key

Robot Engineering

117

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

A behavior is really anything your robot does: turning on a single motor is a behavior, moving
forward is a behavior, tracking a line is a behavior, navigating a maze is a behavior. There
are three main types of behaviors that we are concerned with: complex behaviors, simple
behaviors, and basic behaviors.

Complex Behaviors
These are behaviors at the highest levels, such
as navigating an entire maze. Though they may
seem complicated, one nice property of complex
behaviors is that they are always composed of
smaller behaviors. This means that if you observe
a complex behavior, you can always break it
down into smaller and smaller behaviors until you
eventually reach something you recognize.

Simple Behaviors
Simple behaviors are small, bite-size behaviors that
allow your robot to perform a simple, yet significant
task, like moving forward for a certain amount of
time. These are perhaps the most useful behaviors
to think about, because they are big enough that
you can describe useful actions with them, but
small enough that you can program them easily
from basic EV3 icons.

Basic Behaviors
At the most basic level, everything in a program
must be broken down into tiny behaviors that
your robot can understand and perform directly.
In the EV3 software, these are behaviors the size
of single icons, like turning on a single motor, or
checking a single sensor port. While these basic
behaviors are very specific and immediately
recognizable, they are not always terribly useful for
programming, because they are often too small,
and may not even be visible in the program’s output
because they are too small.

Complex Behavior:
Maze Navigation

Contains the Simple Behavior:
Move Forward until Touch Sensor is
Pushed

Contains the Basic Behavior:
Turn on Left Motor in Forward Direction

Exercises
1. What level of behaviors can your robot perform directly?
2. Why is it useful to think about a robot’s actions in terms of behaviors?

Behaviors
What Are Behaviors?

118

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Robots need very detailed and organized instructions in order to perform their tasks. The
programmer must break things down into simple behaviors and figure out when each
behavior should run. A flowchart is a tool that can be used by programmers to determine
program flow.

A flowchart provides a way of visually representing and organizing individual behaviors
and decisions within a program -- it provides a diagram of the “flow” of the program.
Programmers use flowcharts to lay out the steps that will be needed in their final
program, and to help determine how the robot’s behaviors should be broken down.

Start

Take one step forward;

Gone 50
steps?

End

No

Yes

Start of Program - Marks the beginning of
the program, begin here. Follow the line to get
to the next block.

Statement Block - A statement to
execute, or a behavior to perform.

Decision Block - A decision point in your
program. Ask a simple question, and do
different things depending on the answer.

Yes/No - Answers to the question posed in the
decision block. Follow the line labeled with the
appropriate answer.

End of Program - Marks the end of
the program. If you reach this point, the
program is done!

Exercise
1. Make a flowchart organizing the “flow” of getting ready to go to school in the morning. Be
sure to include the following steps in your chart, but don’t be afraid to add other things if you
need them!

Select something to wear
Take a shower
Eat breakfast
Walk or get a ride to school
Get out of bed

Look for your shoes
Brush your teeth
Put toast in the toaster
Check your alarm clock
Turn on shower

Put your shoes on
Hit snooze button
Get dressed
Comb your hair
Check the time

Parts of a Flowchart

Flowchart Exercise
What are Flowcharts?

119

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

pseudo
adj : not genuine but having the appearance of;
Source: WordNet ® 1.6, © 1997 Princeton University

Pseudocode is a hybrid language, halfway between English and code. It is not real code

yet, but captures the details that will be important in translating your ideas to code, while still
allowing you to think and explain things in plain language. Good pseudocode will make it very
straightforward to write real code afterwards, because all the behaviors and logic will already
be contained in the pseudocode.

Pseudocode example
If you wanted to program a robot to stop when it saw and object and move forward when it
didn’t see and object your pseudocode might look like:

1. Move forward
2. If (sonar sensor detects and object)

stop
3. When the sonar sensor no longer

sees and object move forward.
4. Do this forever

pseudocode

Exercise
1. Convert these instructions to pseudocode and into a flowchart:
 a. “If it’s raining, bring an umbrella.”
 b. “Keep looking until you find it.”
 c. “Take twenty paces, then turn and shoot.”
 d. “Go forward until the touch sensor (on port 1) is pressed in.”
 e. “Turn on oven. Cook the turkey for 4 hours or until meat thermometer
 reaches 180 degrees.”
 f. “Crossing the street” Hint, make sure that you look both ways!

2. Compare the advantages and disadvantages of flowcharts and pseudocode.
 Explain in your own word why you believe one is better than the other.
 Is one of them always better than the other, or are both good in different situations?
 Can you use both to help solve the same problem? Should you?

What is Pseudocode?

Pseudocode Exercise

Robots need very detailed and organized instructions in order to perform their tasks. Before a
programmer can begin programming they need to break a robot’s behaviors down into simple
behaviors and figure out when each behavior should run. Some programmers like to use
pseudocode to begin ed-constructing the programming problem.

120

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

What is a robot?
One easy to understand definition of a robot is Sense-Plan-Act. A robot must be able to Sense its
environment, Plan a course of action based on that data, and Act on that plan.

Sense
Using a variety of available sensors, the robot
gathers data from its surroundings. Sensors include
anything that provides the robot with information on
its environment, such as the color sensor mounted on
the robot in the picture, which will provide feedback
about the color of the blocks in front of it.

Plan
The robot will process the information gathered in
the Sense phase, and formulate an appropriate plan
of action to react to what it saw. This step is most
often performed by software (like your EV3 software)
that has been loaded onto the robot in advance. The
program illustrated here tells the robot to go forward
until it sees a color.

1. Define what a robot does.
2. Describe how your robot senses, plans, and acts to solve the challenge that you are
working on.

Sense Plan Act

Answer the following questions

Act
The robot acts in the world through the
use of actuators–any component which
allows the robot to create a change in
its surroundings, such as motors, which
move the robot through the environment.
The robot in the picture will drive through
the maze.

121

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Engineering Process

Submit a Proposal

Plan
Outline strategy

Identify specifications

Develop schedule

Revise based on Feedback

Prototype
Build working prototype

Conduct design reviews

Research
Identify problem

Research current solutions

Understand requirements

Brainstorm solutions

Develop concept prototypes

Choose an Idea

Innovate Existing Solution

Commercialize
Document & publish results

Market
Solicit customer feedback

Demonstrate Final Prototype

Test
Iteratively improve

Test
Revise
Test

Im
pr

ov
e

ba
se

d
on

 c
us

to
m

er
 fe

ed
ba

ck

122

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Submit a Proposal

Revise based on Feedback

Research
Choose an Idea

Innovate Existing Solution

Demonstrate Final Prototype

Test
Revise
Test

Im
pr

ov
e

ba
se

d
on

 c
us

to
m

er
 fe

ed
ba

ck Plan

Prototype

Test

Commercialize

Engineering Process

In 1917 Henry L. Gantt, an American engineer and social scientist, developed a production control
tool that subsequently has been named the Gantt chart. Gantt charts are useful tools for planning and
scheduling projects.

 Gantt charts allow project managers to:

1. Assess how long a project should take

2. Lay out the order in which tasks need to be carried out

3. Help manage the dependencies between tasks

4. Determine the resources needed

5. Helps monitor progress

The Gantt chart provides a graphical illustration of a schedule that helps to plan, coordinate, and track
specific tasks in a project. Gantt charts may be simple versions created on graph paper or more complex
using project management applications such as Microsoft Project or Excel.

Time
Tasks Week 1 Week 2 Week 3 Week 4
Task 1
Task 2
Task 3
Task 4

A Gantt chart is constructed with a horizontal axis representing the total time span of the project, broken
down into increments (for example, days, weeks, or months) and a vertical axis representing the tasks
that make up the project (for example, if the project is outfitting your computer with new software, the
major tasks involved might be: conduct research, choose software, install software).

Time
 Morning Lunch Afternoon Evening

Computer 1
Computer 2
Computer 3
Computer 4

Legend
In Use

Idle

Maintenance

Gantt charts are also used by supervisors and team leaders to schedule and track the use of resources.
This data can help the project manager determine schedule the optimal use of a technology.

Using Gantt Charts

Gantt Charts

123

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Using PERT Charts
A PERT chart is a project management tool used to schedule, organize, and coordinate tasks within a
project. PERT stands for Program Evaluation Review Technique, it was developed by the U.S. Navy
in the 1950s to manage the Polaris submarine program.

Some project managers prefer a PERT chart because of its ability to represent events and milestones
of a project in a graphical method. The PERT chart shows which parts of the project need to be
completed in a sequential method and which parts can be worked on simultaneously. The PERT
chart is often preferred over the Gantt chart because it is able to clearly illustrate task dependencies.
Frequently, project managers use both techniques.

Development of a PERT chart
The first thing that the team must do is divide their overall project into small tasks. Each small
task should be assigned a leader. Then the team must sequence the order of completion. Some
tasks of the problem may be completed independent of others. These tasks can be worked on
simultaneously. Some tasks may need to be completed before others can start. These things must
be worked on sequentially. The team will look at the tasks and try set deadlines based on prior
experience. They should break tasks into the smallest parts possible to accurately calculate time.

1. Discuss the overall problem
2. Break the problem into small tasks
3. Sequence the order of completion of tasks
4. Schedule the tasks
5. Assign responsibility for tasks to teams and individuals
6. Meet regularly to check progress of overall project
7. Help each other complete tasks in a timely manner

Sample PERT Chart
Arrows illustrate places where
one task depends on another.

Brainstorm
Robot
Design

Build
Electronics

Testbed

Brainstorm
Tactics

Prototype
Drive Train
Solutions

Prototype
Scoring

Solutions

Brainstorm
Programming

Strategy

Test
Electronic
Controls

Begin

Fabricate
Drive Train

Fabricate
Scoring

Solutions

Write/Test
Programs

Integrate Ro-
bot Systems

Test and
Refine
Robot

Build
Shipping

Crate

Pack and
Ship Robot

This task does not depend
heavily on other tasks, and so
it can be done simultaneously

This task has many
dependencies and cannot
be done until those tasks
are all finished

PERT Charts

124

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Intro to the Engineering Journal
The Engineering Journal
All students are required to keep an Engineering Journal. It consists of a folder or binder where
students store their classwork.

Each student’s Engineering Journal contains:
• All class handouts
• All student daily logs and class notes
• All completed and returned assignments
• Final (turned-in) version of any individual assignments that are due

All material should be kept in chronological order

The Engineering Journal is your tool to keep your work organized!

Assessment
The Journal will be graded based on completeness, organization, and content
 A complete journal should include:
 - All class handouts, including syllabus and assignment sheets
 - All teacher-assigned work (homework, quizzes, etc.)
 - Daily logs, one per day of independent work
 - All major project deliverables (proposal,plans, copies of the program)
 - Group meeting notes
 All documents in the journal should be organized by date

Students are responsible for lost, damaged, or poorly kept Journals
 Points may be deducted for journals that are:
 - Lost (no credit for assignments that are lost!)
 - Damaged or sloppy (unprofessional!)

When requested, students should hand in their journals
 This is the preferred method for collecting work on days assignments are due
 - Penalties apply for groups or individuals who are not prepared

Journal contents are graded and returned in the journal
 Assignments are graded according to their own rubrics
 - Quizzes and journal hand-ins can be done together for convenience

Notes and logs are a student’s evidence of work done on a daily basis
 Self- and peer-reported student records are how work habits are tracked
 - Teamwork
 - Effective use of time
 - Good planning and preparation

125

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Using the Engineering Journal

The first page in every Engineering Journal should be
the Project Planner sheet for the project. This serves
as a reference and a table of contents for the other
documents.

How to use the Engineering Journal in your classroom.

The rest of the Engineering Journal
should contain all current and completed
material by a student for the current
project, in chronological order.

Team documents (meeting notes,
student written pieces, copies of student
pseudocode, programs, etc.) can be
handled by a single group member, or
photocopied for every student, at your
discretion.

The Engineering Journal is the preferred method of
collecting and organizing student-produced material for
the Engineering Projects.

126

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Using the Engineering Journal (continued)

Screen 5

When you wish to check students’ progress, you can do so
by simply perusing their journals while they are working.

All individual and group work records should be
incorporated into the journals.

Students should be responsible for keeping their
journals in good order and in good condition.
Appearances count in the real world, they count here
as well.

When an assignment is due, ask students to turn in their
journals at the end of class. The assignment or records
should be incorporated into the journals.

For group deliverables, you may only need to have the
group journal (or one member’s per team) turned in.

Since all of a student’s work is collected in the same
journal, you will be able to refer back to that student’s
previous work and group notes while grading.

When done grading, return journals to students and
continue working.

Daily logs are especially important during the student-
directed portions of the development, because they will
be your primary evidence of progress.

127

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Student Name Date

Course Title Grading Period

Gives full attention to instructions and follows directions.

Comes prepared and works the entire class period.

Works well with minimal supervision.

Works up to potential, shows maximum effort.

Works cooperatively as a member of a group.

Makes effective use of time and/or materials.

Demonstrates initiative and motivation.

Has a cooperative, positive attitude.

Is on time for class.

Participates daily in the cleanup program.

1

10

9

8

7

6

5

4

3

2

Work Habits Point Total

Self Teacher

10 Advanced 9 Proficient 8 Basic 7-0 Unacceptable

Student Work Habit Evaluation Rubric

128

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Writing Rubric

129

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Advanced Proficient Basic Needs
Improvement

Content
Understanding:
The student explains
the topic in an
understandable way.
(Does the student
understand the
topic?)

It is clear to
the reader
that the writer
understands
the topic and
is able to
support their
understanding
with facts and/
or examples.

It is clear to
the reader
that the writer
understands
the topic at an
advanced level.

The writer is able
to communicate
basic
understanding of
the topic

The writer does not
provide relevant
details and facts and
it is not clear that
they know the topic.

Cohesion: The
student response
uses effective writing
and communication
techniques to convey
meaning clearly. (Is
the material easy to
read?)

The response
is well-written
and conveys
meaning
clearly. It uses
connective
language
efficiently
to enhance
meaning (e.g.
but…while) and
is easy to read.

The response is
a readable and
cogent response
that answers
the question
clearly, but it
includes minor
grammatical
errors that do
not interfere with
meaning.

The response
includes list-type
responses, or
uses inappropriate
connective
language that
detracts from the
intended meaning
and makes the
response difficult
to read.

The response
is missing key
elements, is
incoherent, and it is
difficult to read.

The writing rubric is an example of a tool that can be used to evaluate the effectiveness of a student’s response for their
Unit reflection answers. This tool is an example of a writing rubric. There are many examples on the Internet. Type “writing
rubric” into a search engine and find what works for you and your students.

Student Presentation Rubric

Advanced Proficient Basic Below Basic

U
se

 o
f

M
u

lt
im

e
d

ia

Te
ch

n
o
lo

g
y

Excellent use of
multimedia
technology.
• The presentation

was eye appealing.
• The pictures were clear.
• The sequence of the

presentation was well
thought out.

• Presentation was
organized,

• Speakers were clear and
used proper terminology.

• Complete

Student
demonstrated
they knew how to
use multimedia
technology.
• The presentation was

eye appealing.
• The pictures were clear.
• The sequence of the

presentation was well
thought out.

• Complete

Multimedia
technology use
needs work.
• The use of

multimedia
technology was a
distraction rather
than a help.

• Incomplete

Multimedia
technology didn’t
support topic.
• Pictures were not

clear and didn’t
seem to have a
purpose.

• Incomplete

Advanced Proficient Basic Below Basic

C
o
n

te
n

t
A

n
a

ly
si

s

Content was excellent
and well supported
with data and
examples.
• The presentation was

organized.
• The project was fully

described.
• The presentation

included advanced
relevant topics.

• The presentation was
enjoyable to watch.

Content was good
but could have been
better supported
with data and
examples.
• The presentation was

organized.
• The presentation was

organized but needed
more practice to be
excellent.

Content of
presentation
lacked clarity.
• The presentation

lacked organization
and didn’t have a
unified theme.

• The presenters
didn’t use proper
terminology.

Content of
presentation was
incomplete and
lacked clarity.
• The presentation

was incomplete.
• The presenters

were not ready to
present.

130

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Design Review Rubric

131

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Advanced Proficient Basic Below Basic

Ti
m

el
in

es
s

(1
0
%

)

• Design Candidate Sheets
are completed on time for
each design

• Design Assessment
Criteria sheet is
completed on time

• Group is present and
ready to begin on time

• Design Candidate Sheets
are complete but not on
time

• Design Assessment
Criteria sheet is completed
but not on time

• Group is present and read
to begin on time

• Most Design
Candidate Sheets
are complete

• Design Assessment
Criteria sheet is
mostly complete

• Group is present

• Design Candidate
Sheets are not
completed

• Design
Assessment
Criteria sheet is
not completed

• Group is not
present

D
is

cu
ss

io
n

(3

0
%

)

• Group follows good
meeting and teamwork
procedures

• Discussion remains
professional in tone and
direction

• Discussion proceeds
efficiently

• Group is able to focus on
the relevant aspects of
the robot designs

• Group follows decent
meeting and teamwork
procedures

• Discussion remains
professional in tone and
direction

• For the most part
discussion proceeds
efficiently

• For the most part group
focuses on relevant aspect
of robot designs

• Group follows
few meeting
and teamwork
procedures

• Discussion does
not have a
professional tone
or manner

• Discussion does
not proceed
efficiently

• Group rarely
focuses on relevant
aspects of robot
design

• Group does not
work as a team

• Little discussion
occurs

• Discussion does
not stay on topic

• Group does not
focus on relevant
aspects of robot
design

Pr
o
b

le
m

(4

0
%

)

• Design Assessment
Criteria are appropriate

• Discussion indicates that
all team members are
familiar with the problem

• Discussion indicates
that all team members
understand the needs of
the solution

• Candidate designs are
oriented toward solving
the problem

• Candidate designs show
evidence of thought
out design including
mechanics, programming,
and testing

• Design Assessment
Criteria are mostly
appropriate

• Discussion indicates that
most team members are
familiar with the problem

• Discussion indicates that
most team members
understand the needs of
the solution

• Candidate designs are
mostly oriented towards
solving the problem

• Candidate designs mostly
show evidence of thought
out designs

• Design Assessment
Criteria are not
very appropriate

• Discussion
indicates that a few
team members are
familiar with the
problem

• Discussion
indicates that a
few team members
understand the
needs of the
solution

• Candidate designs
do not really try to
solve the problem

• Candidate designs
do not show a
thought out design

• Design
Assessment
Criteria do not
exist

• Little discussion
takes place

• Candidate designs
do not exist

C
o
n

se
n

su
s

(2
0
%

)

• Group members avoid
unnecessary “attachment”
to their designs that gets
in the way of productive
discussion

• All group member are
able to reach consensus

• Group members avoid
unnecessary “attachment”
to their designs that gets
in the way of productive
discussion

• Most group members are
able to reach a consensus

• Group is present and
ready to begin on time

• Group member
must keep pieces
of their original
design which
may temporarily
halt productive
discussion

• Few group
members reach
consensus

• Group members
feel that their
design is the only
design

• Group members
never reach
consensus

Proposal Writing Rubrics

132

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Advanced Proficient Basic Below Basic

Ti
m

el
in

es
s

(1
0
%

)

• All required elements
are produced on time

• Most required
elements are produced
on time

• Few required elements
are produced on time

• Required elements
are not turned in

Pr
es

en
ta

tio
n

(2

0
%

)

• Proposal is well written
with no grammatical or
spelling errors

• Proposal has been
reviewed at least once

• All required elements
are included

• Time lines and charts
are written clearly, with
no unnecessary marks
or cross-outs

• Proposal is well written
with few grammatical
or spelling errors

• Proposal has been
reviewed at least once

• Most required
elements are included

• Time lines and charts
are written clearly with
few unnecessary marks
or cross outs

• Proposal is fairly well
written with many
grammatical or spelling
errors

• Proposal has never
been reviewed

• Most required elements
are included

• Time lines and charts
are written clearly with
many unnecessary
marks and cross-outs

• Proposal is not well
written and has
many grammatical
or spelling errors

• Proposal has never
been reviewed

• Few required
elements are
included

• Time lines and charts
are not written
clearly with many
unnecessary marks
and cross-outs

Pr
a
ct

ic
a
lit

y
(2

5
%

)

• Proposed solution
demonstrates
understanding of real-
world constraints (i.e.
laws of physics, time)

• Time line specifies
due dates for required
deliverables

• Materials list is
reasonable, given
resources

• Proposal clearly links
problem to proposed
solution

• Proposed solution
demonstrates a fair
understanding of real-
world constraints (i.e.
laws of physics, time)

• Time line specifies
most due dates for
required deliverables

• Materials list is mostly
reasonable, given
resources

• The proposal mostly
links problem to the
proposed solution

• Proposed solution
demonstrates a poor
understanding of real-
world constraints (i.e.
laws of physics, time)

• Time line specifies few
due dates for required
deliverables

• Materials list is not
reasonable, given
resources

• Very little connection
made between the
proposed solution and
the problem

• No proposed
solution is given

• No time line
indicated

• Materials list is not
reasonable

• No connection
made between the
proposed solution
and the problem

Pr
o
b

le
m

U

n
d

er
st

a
n

d
in

g
 (

2
5
%

) • Proposal demonstrates
clear understanding of
problem

• Shows consideration
for need and potential
users of product

• Proposal shows a good
deal of understanding
of problem

• Shows a good deal of
consideration for need
and potential of users
of product

• Proposal shows little
understanding of
problem

• Shows little
consideration for need
and potential of users
of product

• Proposal
demonstrates no
understanding of
problem

• Shows no
consideration for
need and potential
users of product

Te
a
m

w
o
rk

(1

0
%

)

• Team has defined
appropriate roles/
responsibilities for all
members

• Most of the team
has defined roles/
responsibilities

• Few members of the
team have defined
roles/responsibilities

• No roles/
responsibilities were
defined for group
members

Addendum: Data Logging

133

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Summary
The Gyro Investigation Chapter gives students an opportunity to use the EV3
Programming Software’s Data Logging capabilities to answer a real-world
engineering question using a scientific experimental design.

The goals of this chapter are threefold: for students to engage directly with data-
based inquiry in a meaningful context, for students to gain hands-on experience in
the use of technology to support scientific inquiry, and to become familiar with the
tools themselves for use in their own future science and engineering projects.

Materials and Scheduling
The EV3 is both the object of study and the vehicle for data collection. The activity is
thus completely self-contained – no additional laboratory equipment is needed.

The activity’s main learning objectives involve data collection and graph
representation of data; these topics are broadly used within scientific inquiry and
thus this unit does not need to be scheduled to coincide with any specific content
unit (e.g. heat, magnetism, or electronics).

Learning Objectives (STEM):
• Collect data about the real-world behavior of complex electromechanical

systems
• EV3 Gyro Sensor
• EV3 integrated Motor Rotation sensor
• Mobile robot driving base in a two-wheeled skid-steer configuration

• Interpret 2D plots of data in context
• Find quantitative values from graph and table representations
• Draw interpretive conclusions by relating two lines of data on a

degrees vs. time plot
• Understand the relationship between technology and scientific

experimentation
• Technology enables the collection of data as part of the inquiry process
• Scientific discovery informs the development of new or improved

technologies

Data Logging: Gyro Sensor Investigation

(continued on next page)

Addendum: Data Logging

134

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

• Use data to understand and improve the outcomes of Engineering
endeavors

• Measure and compare the performance of two sensors to better
evaluate their strengths and weaknesses

Learning Objectives (EV3/Programming):
• Understand what kinds of data can be collected by EV3 Data Logging
• Integrate Data Logging commands into “regular” EV3 programs

Standards:
• [Computer Science Principles 3.1.1] Use computers to process information

to gain insight and knowledge.
• [NGSS Practice 4] Analyzing and Interpreting Data
• [CCSS.Math.Content.8.F.A.2] Compare properties of two functions each

represented in a different way (algebraically, graphically, numerically in
tables, or by verbal descriptions).

Addendum: Data Logging

135

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

Answer Key (Write-Up):

1. There should be two lines on your graph. What does each represent?

The two lines represent the values reported by the two sensors in the investigation at each point in
time. The solid line represents the values of Gyro Sensor, while the dotted line represents the values
of the Rotation Sensor (converted into body turn degrees).

2. The Data Logging Block was set to record 40 points of data each second during
the experiment. What happened to those data points?

Figure 1. Data plot with data points showing

The logged data points (shown as squares and circular dots in the figure above) determine the paths
of the lines. The lines simply “connect the dots”, making it easier to see general patterns in the trends
of the values.

Addendum: Data Logging

136

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

3. Our original hypothesis was that the Gyro Sensor “lagged” behind the actual
robot’s body when turning.

a. Compare the times at which the two sensors said the robot reached the
200-degree mark.

i. How do the two values compare? Which one comes earlier, and which
one comes later?

[In the sample data] The Rotation Sensor line reaches 200 degrees at approximately 0.90 seconds.
The Gyro Sensor line reaches 200 degrees at approximately 0.95 seconds.

ii. What does this suggest about the behavior of the Gyro Sensor?

The Rotation Sensor detects the robot reaching this reference point about 0.05 seconds earlier
than the Gyro Sensor. This suggests the Gyro Sensor is slightly slower than the Rotation Sensor at
detecting changes in direction the robot is facing.

iii. Does this support or refute the hypothesis?

The hypothesis is that the Gyro Sensor readings are slightly delayed compared to the Rotation
Sensor. Being 0.05 seconds behind the Rotation Sensor to detect the robot reaching 200 degrees is
consistent with, and therefore supports, the hypothesis.

b. Compare the amount of turn the two sensors said the robot had made at 0.5
seconds into the program.

i. How do the two values compare? Which one says the robot has turned
farther, and which one says the robot has turned less?

[In the sample data] The Rotation Sensor reading is 106.49 degrees at 0.50 seconds. The Gyro
Sensor reading is 83.00 degrees at 0.50 seconds. The Rotation Sensor value is 23.49 degrees
greater than (i.e. “ahead” of) the Gyro Sensor at that point in time.

ii. What does this suggest about the behavior of the Gyro Sensor?

The Gyro Sensor value is 23.49 degrees “behind” the Rotation Sensor value. This suggests that the
Gyro Sensor is slightly slower than the Rotation Sensor at detecting changes in the direction the robot
is facing.

iii. Does this support or refute the hypothesis?

The hypothesis is that the Gyro Sensor readings are slightly delayed compared to the Rotation
Sensor. Since the Gyro Sensor’s reading is 23.49 degrees “behind” the Rotation Sensor’s reading at
this point in time is consistent with, and therefore supports, the hypothesis.

Addendum: Data Logging

137

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

c. Write a one-page conclusion based on the analysis and interpretation you
performed in the last few steps.

i. State the original question being examined, along with the initial
hypothesis.

ii. Explain the procedure you used to gather your data. Not every detail, just
the parts that relate to answering the original question.

iii. State what the data showed.

iv. Interpret what the data means, in terms of answering the original question.

v. State your conclusion about the answer to the original question.

We conducted an investigation using the data logging capability of the EV3 Programing Software to
examine the hypothesis that the EV3 Gyro Sensor experienced “latency” – a small but consistent time
delay in its reported readings. That delay could be responsible for its tendency to make the robot stop
too late when using the Gyro Sensor to decide when to stop turning.

We programmed an EV3 to turn for a fixed period of 1.5 seconds while recording (“logging”) the Gyro
Sensor’s values throughout the turn at a rate of 40 points per second. To provide a reliable reference,
the robot also recorded the values of the Rotation Sensor built into the robot’s motor at the same
points in time. Motor Rotation values were converted to Robot Body Turn values using a known
conversion ratio, then compared against the Gyro Sensor values.

The lines formed by the two sensor values over time were roughly parallel, suggesting that they were
reporting the same data, but not at the same times.

Two related analyses were conducted to compare the patterns of Gyro Sensor values to the patterns
of Rotation Sensor values. First, we compared the readings of both sensors at an arbitrarily chosen
reference point of 200 degrees. The Rotation Sensor detected that the robot had reached that point
0.05 seconds before the Gyro Sensor reported that the robot had reached it. Second, we compared
the reported values of the two sensors at a reference time of 0.5 seconds after the robot began its
turn. The Gyro reported that the robot had turned 23.49 fewer degrees than the Rotation Sensor at
that point.

Both of these results supported the original hypothesis that the Gyro Sensor reports values that
are delayed, and “lag behind” the robot’s actual position. Assuming the Rotation Sensor values are
accurate, the Gyro Sensor values are roughly 0.05 seconds delayed. Put another way, the Gyro
Sensor line matches closely with what you would get if you took the Rotation Sensor’s line and
“shifted” it 0.05 seconds forward in time.

We can therefore conclude that the data gathered in this investigation supports the original
hypothesis that the Gyro Sensor reports the robot’s direction with a slight delay, and that a robot
behavior such as a turn that uses the Gyro Sensor to determine when to stop would therefore stop
slightly later than it should.than the Gyro Sensor. This suggests the Gyro Sensor is slightly slower
than the Rotation Sensor at detecting changes in direction the robot is facing.

Addendum: Data Wires & Logic

138

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

This section contains condensed Teacher Guide materials for the following sections:

• Pipeline Explorer
• Building Instructions
• Random Move
• Wall Distance Value
• Displaying Data
• Calculation
• Variables
• Review
• Challenge
• Logic

Only major topics and themes will be covered for these sections.

Pipeline Explorer
• Introduces the Pipeline Explorer robot for the chapter

Building Instructions
• The robot for this chapter uses the Ultrasonic Sensor and Touch Sensor, as

well as the Color Sensor in both upward- and downward-facing positions
• You will also need a cardboard box for later activities in this chapter,

including the challenge

Random Move
• This step introduces Data Wires using the simplest example available: a

random number generator’s output used as the motor power setting of a
Move Steering Block.

Wall Distance Value
• This step introduces two important concepts:

• Yellow Sensor Blocks allow direct access to sensor values. They take
a reading from the appropriate sensor when the block runs, and send
that value out through their output terminal.

• Wired values do not update continuously. Instead, the “read sensor”
and “set motor” combination must be repeated each time the

Data Wires & Logic

Addendum: Data Wires & Logic

139

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

programmer wants to use the sensor value to update the motor value.
Doing so many times quickly creates the illusion that the response is
“continuous”, much as a rapidly repeating switch-loop combination did
in Obstacle Detection and Line Following. [Try it! 1 shows a common
scenario which disrupts this structure]

• Students often have two strong misconceptions regarding wires:
• [Try it! 2] Students often believe (incorrectly) that a wired connection

will “pull” or “request” a value when it is needed. In fact, data is
“pushed” or “sent” when the source block is run. The random value
in this program is generated when the Random Block is run, and the
Power setting on the Move Steering Block is set at that time.

• Students also believe (incorrectly) that wires are “persistent” and
update continuously simply by virtue of being connected. While
a real (electrical) wire does work this way, data wires in the EV3
Programming Software does not – it only represents a one-way, one-
time data pathway for a single value.

Displaying Data
• This step shows a particularly popular and useful application for wired

values: displaying them on the EV3’s LCD display as a form of feedback or
for troubleshooting.

• The input plug for the text value that will be displayed is hidden by default.
It only appears when the Display Block is set to display Text, and the text
string in the upper-right of the block is changed to “Wired”.

Calculation
• This step uses a Math Block to perform a unit conversion calculation,

changing motor rotations to centimeters traveled before displaying the value
on the EV3’s LCD display. A known estimate of 17 cm per motor rotation is
used to perform the calculation.

• A major extension to the My Blocks feature is shown as an optional Mini-
Challenge in this section. Parameters allow My Blocks to have configurable
inputs, much like regular blocks do. Mini-Challenge 2 walks students
through the process of creating a My Block with a parameter, which takes
a typed-in (or wired-in) value, performs a unit conversion calculation on it,
then uses the resulting value in a Move Steering On for Rotations Block.
The resulting “Move for Centimeters My Block” construct moves the robot
the typed-in number of centimeters.

Variables

Addendum: Data Wires & Logic

140

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

• This step uses a Variable to store a sensor reading from one physical
location, then display it in another. In this activity, a Color Sensor Ambient
Light value is “written” into storage while the robot is inside a dark box
(literally, a cardboard box or other container), then “read” and displayed
once the robot has returned to the outside.

• You will need a cardboard box or similar that is large enough for the robot to
drive in

• The metaphor for data storage in Variables is to “write” values down, then
“read” them back at a later time

• A Variable Block allows both read and write access to a variable, depending
on the Mode it is set to

• Many Variables can be defined through the EV3 Programming Software. A
Variable Block reads or writes to one variable at a time; the specific variable
is chosen through the setting in the upper-right corner of the Block.

Review
• This page contains solutions to all Mini-Challenges in the Data Wires

section.

Challenge
• This step lays out the details for the Pipeline Explorer Challenge. Students

should work in their teams to complete the challenge objectives.
• This challenge re-uses the same cardboard box prop from the Variables

step, but with a black tape line marked on the inside. The robot must
measure the distance from the entrance of the box to the line, then
the distance from the start of the line to the end of the line (the line’s
“thickness”). The robot must then return to the entrance and display both
measurements in centimeters.

• Helpful practices from prior units will greatly benefit teams here, especially
pseudocoding and iterative development of the solution.

• If you do not have access to a single box large enough to run the robot in,
you can tape together multiple boxes. If you do so, try to make the seams
as flat as possible on the inside so the robot does not mistake them for the
tape line.

Logic
• This stand-alone step demonstrates the use of Logic Values to create

custom decisions, which can then be used to control Program Flow through
Logic Loops and Switches.

Addendum: Data Wires & Logic

141

Introduction to Programming EV3 ©2014 Carnegie Mellon Robotics Academy

• The fundamental idea of logic-based decision making is that you can ask
any question with a Yes/No answer, and use the Yes/No response to tell a
Loop whether to repeat (if yes) or end (if no), or tell a Switch which line of
blocks to run (top if yes, bottom if no).

• Example: Is the value of the left wheel Rotation Sensor greater than the
right wheel Rotation Sensor? If the answer is yes, turn left; if not, turn right
instead.

• Multiple logical statements can be combined into a single composite
statement using Logic Blocks, which contain logical operators such as AND
and OR to combine the values.

• Example: Is the Ultrasonic Sensor value is less than 30 cm OR the
Touch Sensor pressed? If the answer is yes, stop; if not, move forward.

• Note that the above question is actually the combination of two smaller
Yes/No questions:

• Is the Ultrasonic Sensor value less than 30 cm?
• Is the Touch Sensor pressed?
• The Logical Operator OR is used to combine those two values

into a single Yes/No: Yes if at least one of the two is Yes, and No
if they are both No.

• [Try it! 1] The Logical Operator AND performs a similar function,
but it will produce a Yes only if the answers to BOTH smaller
questions are Yes. If only one or neither of the smaller question
answers is Yes, the overall answer will be No.

