How and Why to go Beyond the Discovery of the Higgs Boson

John Alison

University of Chicago

http://hep.uchicago.edu/~johnda/ComptonLectures.html

Lecture Outline

April 1st: Newton's dream \& 20th Century Revolution
April 8th: Mission Barely Possible: QM + SR
April 15th: The Standard Model
April 22nd: Importance of the Higgs
April 29th: Guest Lecture
May 6th: The Cannon and the Camera
May 13th: The Discovery of the Higgs Boson
May 20th: Experimental Challenges
May 27th: Memorial Day: No Lecture
June 3rd: Going beyond the Higgs: What comes next ?

Lecture Outline

April 1st: Newton's dream \& 20th Century Revolution
April 8th: Mission Barely Possible: QM + SR
April 15th: The Standard Model
April 22nd: Importance of the Higgs
April 29th: Guest Lecture
May 6th: The Cannon and
May 13th: The Discovery of
May 20th: Experimental Cl - Steven Weinberg
May 27th: Memorial Day: I
June 3rd: Going beyond th

Sources:

- Nima Arkani-Hamed
- ...

I will keep this list up to date as we go along.

Reminder: Last Lecture

Combining Relativity and Quantum Mechanics

- To preserve causality needed to Anti-particle must exist
- In turn, major implications on the vacuum:

$$
\begin{gathered}
\Delta \mathrm{E}>2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2} \\
e^{-}
\end{gathered}
$$

$$
\Delta \mathrm{E}>2 \mathrm{~m}_{\mu} \mathrm{c}^{2}
$$

Reminder: Last Lecture

Combining Relativity and Quantum Mechanics

- Massive restrictions in types of theories possible
- Forced to talk particle spin:

Integer spin $=$ Bosons $/$ Half-integer $=$ Fermions
Can only have: $\begin{array}{llllll}0 & 1 / 2 & 1 & 3 / 2 & 2\end{array}$

- Major limits to possible interaction:

Charge conservation / Local in space-time Only finite number of specific interactions allowed:

Today's Lecture

The Standard Model:
What the world is made of

Matter

Stuff in the world made of atoms:

Matter

Stuff in the world made of atoms:

Atoms made of:

Electrons:

Nucleus:

Matter

Stuff in the world made of atoms:

Atoms made of:

Electrons: Negatively charged
Responsible for volume of atom Thought to be fundamental

Nucleus:

Matter

Stuff in the world made of atoms:

Atoms made of:

Electrons: Negatively charged
Responsible for volume of atom
Thought to be fundamental

Nucleus: Positively charged
Responsible for the mass of an atom
Made of, protons and neutrons, which are made of quarks
Quarks also thought to be fundamental

Matter

Stuff in the world made of atoms:

Atoms made of:

Electrons: Negatively ch $\begin{aligned} & \text { Matter particles (electrons/quarks) fermions } \\ & \text { Large collections behave lik }\end{aligned}$ Responsible for volume orn Thought to be fundamental

Nucleus: Positively charged Responsible for the mass of an atom Made of, protons and neutrons, which are made of quarks Quarks also thought to be fundamental

Forces

Gravity:
Known since antiquity / Inverse square law
Always attractive / Irrelevant for atomic/sub-atomic interactions

Forces

Gravity:
Known since antiquity / Inverse square law
Always attractive / Irrelevant for atomic/sub-atomic interactions
Electromagnetism:
Known since antiquity / Inverse square law
Attractive or repulsive / Holds electrons within atoms

Forces

Gravity:
Known since antiquity / Inverse square law
Always attractive / Irrelevant for atomic/sub-atomic interactions
Electromagnetism:
Known since antiquity / Inverse square law
Attractive or repulsive / Holds electrons within atoms
Strong:
Discovered early 1900s / Short distances / No simple relationship Responsible for holding together the nucleus

Forces

Gravity:
Known since antiquity / Inverse square law
Always attractive / Irrelevant for atomic/sub-atomic interactions

Electromagnetism:

Known since antiquity / Inverse square law
Attractive or repulsive / Holds electrons within atoms
Strong:
Discovered early 1900s / Short distances / No simple relationship Responsible for holding together the nucleus

Weak:
Discovered just before turn of 20th century / Looks nothing like others Radioactive decay. Heats the sun / earth

Forces Look very differtant.

Gravity:
Known since antiquity / Inverse square law
Always attractive / Irrelevant for atomic/sub-atomic interactions
Electromagnetism:
Known since antiquity / Inverse square law
Attractive or repulsive / Holds electrons within atoms
Strong:
Discovered early 1900s / Short distances / No simple relationship
Responsible for holding together the nucleus
Weak:
Discovered just before turn of 20th century / Looks nothing like others Radioactive decay. Heats the sun / earth

The Standard Model

Our world both Relativistic and Quantum Mechanical
\Rightarrow described in terms of a Quantum Field Theory (QFT)

The Standard Model

Our world both Relativistic and Quantum Mechanical
\Rightarrow described in terms of a Quantum Field Theory (QFT)
The particular version of QFT that was found to describe our universe developed in the 1960-70s.

The Standard Model

Our world both Relativistic and Quantum Mechanical
\Rightarrow described in terms of a Quantum Field Theory (QFT)
The particular version of QFT that was found to describe our universe developed in the 1960-70s.

Most accurate theory in all of science

- Describes all matter/interactions down to $10^{\wedge}-18 \mathrm{~m}$ (Distances $100 \times$ smaller than proton)
- Accurate/precise description all observed particle interactions

Output of the Theory

Predict probabilities for various things to happen Example:

Output of the Theory

Predict probabilities for various things to happen Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Output of the Theory

Predict probabilities for various things to happen
Example:

Forces from Interactions

Forces long-range manifestations of local interactions No more action at a distance!

Electromagnetic force between two electrons result exchange of a photon Exchange as local interactions two e- γ interactions

Forces from Interactions

Gravitational Interaction

Electromagnetic Interaction

Strong Interaction

Weak Interaction

Forces from Interactions

Gravitational Interaction

Electromagnetic Interaction

Strong Interaction Weak Interaction

Forces from Interactions

Gravitational Interaction

Electromagnetic Interaction

Strong Interaction Weak Interaction

Forces from Interactions

Gravitational Interaction
Strong Interaction $\quad \underline{\begin{array}{l}\text { Weak Interaction } \\ \text { - Needed describe week } \\ \text { - Like electron w/no ch } \\ - \text { Believed to be fundam }\end{array}}$

Electromagnetic Interaction

P

The Standard Model

Matter Particles (Fermions)

Leptons:
Quarks: $\binom{v_{\mathrm{e}}}{e}$ $\binom{u}{d}$

Interactions "Force carriers" (Bosons)
Gauge bosons:

W
Z
g

The Standard Model

Matter Particles (Fermions)

Leptons: $\binom{V_{e}}{e}$

Quarks:

$$
\binom{\mathrm{u}}{\mathrm{~d}}
$$

Interactions "Force carriers" (Bosons) Spin $=1$

Gauge bosons:
γ
W
Z
g

Beautiful (complicated) mathematics governs nature interactions Dictated by principles of symmetry (Much direct consequence $Q M+R$)

The Standard Model

Matter Particles (Fermions)

$$
\operatorname{Spin}=1 / 2
$$

Leptons: $\binom{v_{e}}{e}$
$\binom{v_{\mu}}{\mu}$
$\binom{\nu_{\tau}}{\tau}$
Quarks:

$$
\binom{\mathrm{u}}{\mathrm{~d}} \quad\binom{\mathrm{c}}{\mathrm{~s}} \quad\binom{\mathrm{t}}{\mathrm{~b}}
$$

Interactions "Force carriers" (Bosons) Spin $=1$

Gauge bosons:
γ
W
Z
g

Beautiful (complicated) mathematics governs nature interactions Dictated by principles of symmetry (Much direct consequence $Q M+R$)

Masses

Masses

These masses are inputs to the theory Need to determine them from experiment

Tau-
Photon

Interaction Strengths

Each interaction vertex characterized by number:

Sets the overall strength of the different interactions

- Directly related to the probability for the processes to occur

Interaction Strengths

Each interaction vertex characterized by number:

Sets the overall strength of the different interactions

- Directly related to the probability for the processes to occur

These numbers are inputs to the theory

- Need to determine them from experiment
- Then use them as input in other calculations.

Interaction Strengths

Each interaction vertex characterized by number:

Interaction Strengths

Each interaction vertex characterized by number:

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens
Invaluable Tool for calculation

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ
- Really infinite sum. In practice, only the first few terms dominate

Output of the Theory (Details)

Feynman Diagrams: Pictures of what happens Invaluable Tool for calculation

1-loops

$\sim \alpha^{2} \frac{1}{4 \pi} \frac{1}{m_{e}}$

$$
+\quad \ldots
$$

even smaller

- Theory give prescription for assigning numerical value to diagram.

Other rules associated to the lines / Sum overall possible configurations

- Sum of diagrams (\# associated with diagrams) is ψ
- Really infinite sum. In practice, only the first few terms dominate

Output of the Theory (Details)

Just saw example of calculating interaction between particles Can also calculate basic properties of particles

Output of the Theory (Details)

Just saw example of calculating interaction between particles Can also calculate basic properties of particles

Example: Contribution to mass Z boson

Output of the Theory (Details)

Just saw example of calculating interaction between particles
Can also calculate basic properties of particles

Example: Contribution to mass Z boson

- Seems impossible given mtop $>m Z$
- Allowed by Quantum theory (Uncertainty principle $\Delta \mathrm{E} \Delta \mathrm{t} \geq \mathrm{h}$)
- "Quantum Corrections" to mass
- Confirmed observable consequences

Forces Common Language

First time that we see that all forces described in same basic way.

Forces look very different to us...

EM Strength w/Distance

EM Strength w/Distance

EM Strength w/Distance

EM Strength w/Distance

Strong Interaction w/Distance

Strong Interaction w/Distance

Strong Interaction w/Distance

Unlike photons, gluons can self interact.

Strong Interaction w/Distance

Unlike photons, gluons can self interact.

Strong Interaction w/Distance

Unlike photons, gluons can self interact.

Strong Interaction w/Distance

Unlike photons, gluons can self interact.

Back to EM Interaction

Electron high probability to emit γ when:
Electro-magnetic Force

Back to EM Interaction

Electron high probability to emit γ when: $\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)

Electro-magnetic Force

Back to EM Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$) $\mathrm{r}<\mathrm{h} / \mathrm{Ec}$

Electro-magnetic Force

Back to EM Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$

Electro-magnetic Force

Back to EM Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$

Electro-magnetic Force

Back to EM Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$
$\mathrm{F}(=-\Delta \mathrm{p})$ on q can extends to $\mathrm{r}=\infty$

Electro-magnetic Force

Back to EM Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$
$\mathrm{F}(=-\Delta \mathrm{p})$ on q can extends to $\mathrm{r}=\infty$ Of course, force get smaller ($\mathrm{p} \rightarrow 0$)
(Gives precisely inverse square law)

Electro-magnetic Force

Weak Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$
$\mathrm{F}(=-\Delta \mathrm{p})$ on q can extends to $\mathrm{r}=\infty$
Of course, force get smaller ($\mathrm{p} \rightarrow 0$)
(Gives precisely inverse square law)

Electro-magnetic Force

Weak Force

Electron high probability to emit \mathbf{Z} when: $\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$) $\mathrm{r}<\mathrm{h} / \mathrm{Ec}$

Weak Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$
$\mathrm{F}(=-\Delta \mathrm{p})$ on q can extends to $\mathrm{r}=\infty$
Of course, force get smaller ($\mathrm{p} \rightarrow 0$)
(Gives precisely inverse square law)

Electro-magnetic Force

Weak Force

Electron high probability to emit \mathbf{Z} when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$) $\mathrm{r}<\mathrm{h} / \mathrm{Ec}$
$\mathrm{r}<\mathrm{h} / \sqrt{ }\left(\mathrm{pc}+\mathrm{mzc}^{2}\right) \mathrm{c}$

Weak Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$
$\mathrm{F}(=-\Delta \mathrm{p})$ on q can extends to $\mathrm{r}=\infty$
Of course, force get smaller ($\mathrm{p} \rightarrow 0$)
(Gives precisely inverse square law)

Electro-magnetic Force

Weak Force

Electron high probability to emit \mathbf{Z} when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$) $\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \sqrt{ }\left(\mathrm{pc}+\mathrm{mzc}^{2}\right) \mathrm{c}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \sim 1 / \mathrm{mZ}$

Weak Interaction

Electron high probability to emit γ when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$)
$\mathrm{r}<\mathrm{h} /$ Ec
$\mathrm{r}<\mathrm{h} / \mathrm{pc}^{2}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \infty$
$\mathrm{F}(=-\Delta \mathrm{p})$ on q can extends to $\mathrm{r}=\infty$
Of course, force get smaller ($\mathrm{p} \rightarrow 0$)
(Gives precisely inverse square law)

Electro-magnetic Force

Weak Force

Electron high probability to emit \mathbf{Z} when:
$\mathrm{E} \times \mathrm{r}<\mathrm{h} / \mathrm{c}$ (consistent with $\Delta E \Delta t>h$) $\mathrm{r}<\mathrm{h} / \mathrm{Ec}$
$\mathrm{r}<\mathrm{h} / \sqrt{ }\left(\mathrm{pc}+\mathrm{mzc}^{2}\right) \mathrm{c}$
when $\mathrm{p} \rightarrow 0$ then $\mathrm{r} \rightarrow \sim 1 / \mathrm{mZ}$
$F(=-\Delta p)$ on q cannot extend to $r=\infty$ Mass of Z makes weak force short ranged.

Forces Common Language

First time that we see that all forces described in same basic way.

Forces look very different to us...

Forces Common Language

First time that we see that all forces described in same basic way.

Forces look very different to us... is a long distance illusion!

Forces Common Language

First time that we see that all forces described in same basic way.

Forces look very different to us... is a long distance illusion!

- Strong force: anti-screening / confinement
- Weak force: massing force carriers

At short distance ($\sim 1 / \mathrm{mZ}$) all look the forces start to look the same

Forces Common Language

First time that we see that all forces described in same basic way.

Forces look very different to us... is a long distance illusion!

- Strong force: anti-screening / confinement
- Weak force: massing force carriers

At short distance ($\sim 1 / \mathrm{mZ}$) all look the forces start to look the same

The Standard Model

The Standard Model took on modern form in 60s - 70s.
Makes very precise predictions, shown to be highly accurate.
Consistent theory of electromagnetic, weak and strong forces ...

The Standard Model

The Standard Model took on modern form in 60s - 70s.
Makes very precise predictions, shown to be highly accurate.
Consistent theory of electromagnetic, weak and strong forces ...
... provided massless Matter and Force Carriers

The Standard Model

The Standard Model took on modern form in 60s - 70s.
Makes very precise predictions, shown to be highly accurate.
Consistent theory of electromagnetic, weak and strong forces ...
... provided massless Matter and Force Carriers

Serious problem as matter and W, Z known to be massive !

The Standard Model

The Standard Model took on modern form in 60s - 70s.
Makes very precise predictions, shown to be highly accurate.
Consistent theory of electromagnetic, weak and strong forces ...
... provided massless Matter and Force Carriers

Serious problem as matter and W, Z known to be massive !

Pick up here next time.

Bonus

Number of Parameters

Vertex interaction strength input to the theory
 - Taken from data

QFT \Rightarrow Only this "three point" interaction relevant

All calculations done by just stitch together this one basic vertex

One parameter (\bullet) is enough to calculate all graphs

Number of Parameters

If all vertices relevant (as in NR QM)

Each term introduces a new unknown parameter. Lose predictive power

