How and Why to go Beyond the Discovery of the Higgs Boson

John Alison

University of Chicago
http://hep.uchicago.edu/~johnda/ComptonLectures.html

Intermezzo

Taking a lot of flak for remarks associated to:

Intermezzo

Taking a lot of flak for remarks associated to:

Realizing Newton's Dream

Go through a few examples of this kind of reasoning:

- Teeth behind these statements
- Describe world around us in a few basic physical parameters
- Powerful (Fun!) way of estimating ~anything to order of magnitude

Dimensional Analysis and " \sim

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Dimensional Analysis and " \sim "

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$

Dimensional Analysis and " \sim "

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$
Cube $=R^{3}$
$\sim \mathrm{R}^{3}$

Dimensional Analysis and " \sim "

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$

$$
\begin{array}{ll}
\text { Cube }=R^{3} & \sim R^{3} \\
\text { Sphere }=4 / 3 \pi R^{3} & =4.2 R^{3}
\end{array} \sim R^{3}
$$

Dimensional Analysis and " \sim "

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$

$$
\begin{array}{rlr}
\text { Cube } & =\mathrm{R}^{3} & \sim \mathrm{R}^{3} \\
\text { Sphere } & =4 / 3 \pi \mathrm{R}^{3}=4.2 \mathrm{R}^{3} & \sim \mathrm{R}^{3} \\
& =1 / 6 \pi(\mathrm{D})^{3}=0.4 \mathrm{D}^{3} & \sim \mathrm{D}^{3}
\end{array}
$$

Dimensional Analysis and " \sim "

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$

$$
\begin{aligned}
\text { Cube } & =\mathrm{R}^{3} & \sim \mathrm{R}^{3} \\
\text { Sphere } & =4 / 3 \pi \mathrm{R}^{3}=4.2 \mathrm{R}^{3} & \sim \mathrm{R}^{3} \\
& =1 / 6 \pi(\mathrm{D})^{3}=0.4 \mathrm{D}^{3} & \sim \mathrm{D}^{3} \\
\text { Cylinder } & =\mathrm{R} \times \pi \mathrm{R}^{2}=\pi \mathrm{R}^{3} & \left.\sim \mathrm{R}^{3} \text { (if two scales use } \mathrm{r}^{2} \mathrm{R}\right)
\end{aligned}
$$

Dimensional Analysis and " "

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$

$$
\begin{aligned}
& \text { Cube }=\mathrm{R}^{3} \quad \sim \mathrm{R}^{3} \\
& \text { Sphere }=4 / 3 \pi R^{3}=4.2 R^{3} \sim R^{3} \\
& =1 / 6 \pi(\mathrm{D})^{3}=0.4 \mathrm{D}^{3} \sim \mathrm{D}^{3} \\
& \text { Cylinder }=\mathrm{R} \times \pi \mathrm{R}^{2}=\pi \mathrm{R}^{3} \quad \sim \mathrm{R}^{3} \text { (if two scales use } \mathrm{r}^{2} \mathrm{R} \text {) }
\end{aligned}
$$

Kinematic energy $=1 / 2 \mathrm{mv}^{2} \sim \mathrm{mv}^{2}$

Dimensional Analysis and " \sim

Put in the right physics to get answers to within "geometric factors"

- Dont worry about factors of 2 or π etc
- Use "~" not "="

Examples (Volume of something) $\sim(\text { size })^{3}$

$$
\begin{aligned}
& \text { Cube }=R^{3} \quad \sim R^{3} \\
& \text { Sphere }=4 / 3 \pi R^{3}=4.2 R^{3} \sim R^{3} \\
& =1 / 6 \pi(\mathrm{D})^{3}=0.4 \mathrm{D}^{3} \sim \mathrm{D}^{3} \\
& \text { Cylinder }=\mathrm{R} \times \pi \mathrm{R}^{2}=\pi \mathrm{R}^{3} \quad \sim \mathrm{R}^{3} \text { (if two scales use } \mathrm{r}^{2} \mathrm{R} \text {) }
\end{aligned}
$$

Kinematic energy $=1 / 2 \mathrm{mv}^{2} \sim \mathrm{mv}^{2}$

Ive been doing this already: " $\Delta \mathrm{p} \Delta \mathrm{x} \geq \mathrm{h}$ "
(...it is really $\Delta \mathrm{p} \Delta \mathrm{x} \geq \mathrm{h} /(4 \pi)$)

Units

I hate units! All numbers are really unit-less
Always comparing some quantity relative to some standard We will work in "Natural Units"

Units

I hate units! All numbers are really unit-less
Always comparing some quantity relative to some standard We will work in "Natural Units"

Natural Units

- The right way to think about the world (How physicists think, what makes them seem smart to other people)
- Very easy. Much easier than Metric/British/cgm/mks ...
- Standard is set by basic physical principles
\Rightarrow numbers have direct physical interpretations

Units

I hate units! All numbers are really unit-less
Always comparing some quantity relative to some standard We will work in "Natural Units"

Natural Units

- The right way to think about the world (How physicists think, what makes them seem smart to other people)
- Very easy. Much easier than Metric/British/cgm/mks ...
- Standard is set by basic physical principles
\Rightarrow numbers have direct physical interpretations

$\mathrm{c} \equiv$ 1: [Distance]/[Time] $\equiv 1$

- Time and distance have same units
- $\mathrm{E}=\mathrm{m}$

Units

I hate units! All numbers are really unit-less
Always comparing some quantity relative to some standard We will work in "Natural Units"

Natural Units

- The right way to think about the world (How physicists think, what makes them seem smart to other people)
- Very easy. Much easier than Metric/British/cgm/mks ...
- Standard is set by basic physical principles
\Rightarrow numbers have direct physical interpretations
$\mathrm{c} \equiv 1: \quad[$ Distance $] /[$ Time $] \equiv 1$
- Time and distance have same units
- $\mathrm{E}=\mathrm{m}$

You are already familiar with this: "Its about an hour from here"

Units

I hate units! All numbers are really unit-less
Always comparing some quantity relative to some standard We will work in "Natural Units"

Natural Units

- The right way to think about the world (How physicists think, what makes them seem smart to other people)
- Very easy. Much easier than Metric/British/cgm/mks ...
- Standard is set by basic physical principles
\Rightarrow numbers have direct physical interpretations
$\mathbf{c} \equiv$ 1: [Distance]/[Time] $\equiv 1$
- Time and distance have same units
- $\mathrm{E}=\mathrm{m}$
$h \equiv 1:[$ Energy $] \times[$ Time $]=1$ and $[$ Energy $] \times[$ Distance $]=1$
- Energy (or Mass) is inversely related to distance or time.

You are already familiar with this: "Its about an hour from here"

Units

I hate units! All numbers are really unit-less
Always comparing some quantity relative to some standard
We will work in "Natural Units"

Natural Units

- The right way to think about the world
(How physicists think, what makes them seem smart to other people)
- Very easy. Much easier than Metric/British/cgm/mks ...
- Standard is set by basic physical principles
\Rightarrow numbers have direct physical interpretations
$\mathbf{c} \equiv$ 1: [Distance]/[Time] $\equiv 1$
- Time and distance have same units
- $\mathrm{E}=\mathrm{m}$
$h \equiv 1:[$ Energy $] \times[$ Time $]=1$ and $[$ Energy $] \times[$ Distance $]=1$
- Energy (or Mass) is inversely related to distance or time.

Write everything in terms of [Energy]: use $1 \mathrm{GeV} \sim \mathrm{mp}$ as basic unit

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~s}
\end{aligned}
$$

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~s}
\end{aligned}
$$

Proton Weight: GeV

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~S}
\end{aligned}
$$

Proton Weight: GeV
Proton Size: $\quad \mathrm{GeV}^{-1}$

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~s}
\end{aligned}
$$

Proton Weight: GeV
Proton Size: $\quad \mathrm{GeV}^{-1}$
My height: $\quad 1 \mathrm{~m} \sim 10^{16} \mathrm{GeV}^{-1}$

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~S}
\end{aligned}
$$

Proton Weight: GeV
Proton Size: $\quad \mathrm{GeV}^{-1}$
My height:
$1 \mathrm{~m} \sim 10^{16} \mathrm{GeV}^{-1}$
My weight:
$100 \mathrm{~kg} \sim 10^{29} \mathrm{GeV}$

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~s}
\end{aligned}
$$

Proton Weight: GeV
Proton Size: I am as tall as $10^{\wedge} 16$ protons stacked on top of each other
My height: $\quad 1 \mathrm{~m} \sim 10^{16} \mathrm{GeV}^{-1}$
My weight:
$100 \mathrm{~kg} \sim 10^{29} \mathrm{GeV}$

Examples

Everything in terms of GeV . Use conversions to get back to human units
Conversions:

$$
\begin{aligned}
& \mathrm{GeV}=10^{-27} \mathrm{~kg} \\
& \mathrm{GeV}^{-1}=10^{-16} \mathrm{~m} \\
& \mathrm{GeV}^{-1}=6 \cdot 10^{-25} \mathrm{~s}
\end{aligned}
$$

Proton Weight: GeV
Proton Size: $\quad \mathrm{GeV}^{-1}$
My height:
$1 \mathrm{~m} \sim 10^{16} \mathrm{GeV}^{-1}$
I am made of $\sim 10^{\wedge} 29$ protons
My weight:
$100 \mathrm{~kg} \sim 10^{29} \mathrm{GeV}$

EM and Gravitation Interactions

Electromagnetic Energy

$$
\mathrm{E}=-\frac{\mathrm{e}^{2}}{4 \pi} \frac{1}{\mathrm{r}}
$$

EM and Gravitation Interactions

Electromagnetic Energy

$$
\underset{\mathrm{GeV}}{\mathrm{E}}=-\frac{\mathrm{e}^{2}}{4 \pi} \frac{1}{\mathrm{r}}
$$

EM and Gravitation Interactions

Electromagnetic Energy

$$
\begin{array}{cc}
\mathrm{E}=-\frac{\mathrm{e}^{2}}{4 \pi} & \frac{1}{\mathrm{r}} \\
\downarrow & \downarrow \\
\mathrm{GeV} & \mathrm{GeV}
\end{array}
$$

EM and Gravitation Interactions

Electromagnetic Energy

$$
\begin{gathered}
\mathrm{E}=-\underbrace{\frac{\mathrm{e}^{2}}{4 \pi}}_{\downarrow} \frac{1}{\mathrm{r}} \\
\downarrow \mathrm{GeV}
\end{gathered}
$$

$$
\begin{array}{|l}
\hline \text { Pure number: } \alpha \\
\text { Its small: } 1 / 137
\end{array}
$$

EM and Gravitation Interactions

Electromagnetic Energy

$$
\begin{gathered}
\mathrm{E}=-\underbrace{\mathrm{E}}_{\mathrm{GeV}} \underbrace{\frac{\mathrm{e}^{2}}{4 \pi}}_{\downarrow} \quad \frac{1}{\mathrm{r}} \\
\downarrow \mathrm{GeV}
\end{gathered} \quad \begin{aligned}
& \downarrow \\
& \mathrm{GeV}
\end{aligned}
$$

Gravitational Energy

$$
\begin{array}{|l}
\hline \text { Pure number: } \alpha \\
\text { Its small: } 1 / 137
\end{array}
$$

EM and Gravitation Interactions

Electromagnetic Energy

Gravitational Energy

$$
\begin{gathered}
\mathrm{E} \\
\downarrow \\
\mathrm{GeV}
\end{gathered}
$$

> Pure number: α Its small: $1 / 137$

EM and Gravitation Interactions

Electromagnetic Energy

Gravitational Energy

$$
\stackrel{\mathrm{E}}{\mathrm{E}}=-\underbrace{\mathrm{G}_{\mathrm{N}}}_{\downarrow} \frac{\mathrm{m}_{\mathrm{p}}^{2}}{\mathrm{r}}
$$

Dimensionful number

$$
\mathrm{G}_{\mathrm{N}} \mathrm{~m}_{\mathrm{p}}^{2}=10^{-39}
$$

The world with 4 numbers

Claim: \sim everything in world combination of these numbers

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{p}} \sim 1 \mathrm{GeV} & \\
\mathrm{~m}_{\mathrm{e}} \sim 10^{-3} \mathrm{GeV} & \alpha_{\mathrm{G}} \equiv \mathrm{G}_{\mathrm{N}} \mathrm{~m}_{\mathrm{p}}^{2}=10^{-39}
\end{array}
$$

Will work through some quick examples.

Atoms

$$
\mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}}
$$

Atoms

$$
\mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{m_{\mathrm{e}}} \quad \mathrm{p} \times \mathrm{r} \sim 1 .
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \\
& \mathrm{p} \quad \mathrm{E} \sim \mathrm{r} \sim 1 \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}}
\end{aligned}
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{m_{\mathrm{e}}} \quad \mathrm{p} \times \mathrm{r} \sim 1 \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}}
\end{aligned}
$$

Z	Prediction	Actual Value
1	$\sim 10^{-11} \mathrm{~m}$	$2.5 \cdot 10^{-11} \mathrm{~m}$
10	$\sim 10^{-12} \mathrm{~m}$	$4.0 \cdot 10^{-11} \mathrm{~m}$
>10	$\sim 10^{-12} \mathrm{~m}$	$\sim 10^{-10} \mathrm{~m}$

Details of electron screening needed for high Z
(Will use 10^-10 when $Z>10$)

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \\
& \mathrm{p} \quad \mathrm{E} \sim \mathrm{r} \sim 1 \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}}
\end{aligned}
$$

Atoms

$$
\begin{array}{ll}
\mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} & \mathrm{p} \times \mathrm{r} \sim 1 \\
\mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} & \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z} \alpha}{\mathrm{Z}}+\frac{1}{\mathrm{~m}_{\mathrm{p}}}
\end{array}
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \quad \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{~m}_{\mathrm{e}}} \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} \quad \quad \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z}^{1 / 3}}{\mathrm{~m}_{\mathrm{p}}} \\
& \frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10^{-5}
\end{aligned}
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \quad \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{~m}_{\mathrm{e}}} \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} \quad \quad \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z}^{1 / 3}}{\mathrm{~m}_{\mathrm{p}}} \\
& \frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10^{-5} \\
& \mathrm{p}_{\mathrm{e}} \sim \frac{1}{\mathrm{r}_{\text {atom }}} \sim \mathrm{m}_{\mathrm{e}}(\mathrm{Z} \alpha) \quad \mathrm{v}_{\mathrm{e}} \sim(\mathrm{Z} \alpha)
\end{aligned}
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \quad \mathrm{E} \times \mathrm{r} \sim 1 \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} \quad \quad \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{Z}_{\mathrm{e}} \mathrm{r}^{2}} \\
& \mathrm{~m}_{\mathrm{p}}
\end{aligned}
$$

Atoms

$$
\mathrm{p} \times \mathrm{r} \sim 1
$$

$$
\begin{array}{ll}
\mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} & \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{~m}_{\mathrm{e}} \mathrm{r}^{2}} \\
\mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} & \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z}^{1 / 3}}{\mathrm{~m}_{\mathrm{p}}}
\end{array}
$$

$$
\frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10 \xlongequal[\text { Number of different atoms } \sim 1 / \alpha]{ }
$$

$$
\mathrm{p}_{\mathrm{e}} \sim \frac{1}{\mathrm{r}_{\text {atom }}} \sim \mathrm{m}_{\mathrm{e}}(\mathrm{Z} \alpha) \quad \mathrm{v}_{\mathrm{e}} \sim(\mathrm{Z} \alpha)
$$

- Why we could do QM first with out relativity: ($\mathrm{v} \ll 1$ for $\mathrm{Z} \sim 1$) - Why electricity more stronger everyday than magnetism.

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \quad \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{~m}_{\mathrm{e}}} \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} \quad \quad \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z}^{1 / 3}}{\mathrm{~m}_{\mathrm{p}}} \\
& \frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10^{-5} \\
& \mathrm{p}_{\mathrm{e}} \sim \frac{1}{\mathrm{r}_{\text {atom }}} \sim \mathrm{m}_{\mathrm{e}}(\mathrm{Z} \alpha) \quad \mathrm{v}_{\mathrm{e}} \sim(\mathrm{Z} \alpha)
\end{aligned}
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \quad \mathrm{E} \sim \mathrm{r} \sim 1 \\
& \mathrm{r}_{\text {atom }} \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{Z}_{\mathrm{e}} \mathrm{r}^{2}} \\
& \frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10^{-5} \\
& \mathrm{p}_{\mathrm{e}} \sim \frac{1}{\mathrm{r}_{\text {atom }}} \sim \mathrm{m}_{\mathrm{e}}(\mathrm{Z} \alpha) \quad \mathrm{V}_{\mathrm{e}} \sim(\mathrm{Z} \alpha) \\
& \mathrm{E}_{\text {atom }} \sim \frac{\mathrm{Z}^{1 / 3}}{\mathrm{~m}_{\mathrm{p}}} \\
& \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}} \sim \mathrm{Z}^{2} \alpha^{2} \mathrm{~m}_{\mathrm{e}}
\end{aligned}
$$

Atoms

$$
\begin{aligned}
& \mathrm{E} \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}} \quad \mathrm{E} \times \mathrm{r} \sim 1 \\
& \mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} \quad \quad \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{1}{\mathrm{~m}_{\mathrm{e}} \mathrm{r}^{2}} \\
& \mathrm{~m}_{\mathrm{p}} \\
& \frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10^{-5} \\
& \mathrm{p}_{\mathrm{e}} \sim \frac{1}{\mathrm{r}_{\text {atom }}} \sim \mathrm{m}_{\mathrm{e}}(\mathrm{Z} \alpha) \quad \mathrm{V}_{\mathrm{e}} \sim(\mathrm{Z} \alpha)
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{atom}} \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\mathrm{atom}}} \sim \mathrm{Z}^{2} \alpha^{2} \mathrm{~m}_{\mathrm{e}}
$$

For Hydrogen
$10^{-4} 0.5 \mathrm{MeV} \sim 50 \mathrm{eV}$ (Actually is 13.6 eV)

$$
\begin{gathered}
\text { Atoms } \\
\begin{array}{c}
\text { For Atoms Electron mass is king! } \\
\begin{array}{l}
\text { F } \sim-\frac{\mathrm{Z} \alpha}{\mathrm{r}}+\frac{\mathrm{p}^{2}}{\mathrm{~m}_{\mathrm{e}}}
\end{array} \\
\mathrm{r}_{\text {atom }} \sim \frac{1}{\mathrm{Z} \alpha \mathrm{~m}_{\mathrm{e}}} \quad \quad \mathrm{r}_{\text {nucleus }} \sim \frac{\mathrm{Z}^{1 / 3}}{\mathrm{~m}_{\mathrm{p}}}
\end{array} \\
\frac{\mathrm{r}_{\text {nucleus }}}{\mathrm{r}_{\text {atom }}} \sim \frac{\alpha \mathrm{m}_{\mathrm{e}}}{\mathrm{Z}^{2 / 3} \mathrm{~m}_{\mathrm{p}}} \sim 10^{-5} \\
\mathrm{p}_{\mathrm{e}} \sim \frac{1}{\mathrm{r}_{\text {atom }}} \sim \mathrm{m}_{\mathrm{e}}(\mathrm{Z} \alpha) \quad \mathrm{v}_{\mathrm{e}} \sim(\mathrm{Z} \alpha)
\end{gathered}
$$

Solids

(To within our \sim) Solids just atoms stacked next to each other

Solids

(To within our \sim) Solids just atoms stacked next to each other
Mass Density: Mass/Volume

$$
\rho_{\text {solid }} \sim \frac{\mathrm{Zm}_{\mathrm{p}}}{\left(\mathrm{r}_{\text {atom }}\right)^{3}} \sim \mathrm{Z}^{4} \alpha^{3} \mathrm{~m}_{\mathrm{p}} \mathrm{~m}_{\mathrm{e}}^{3}
$$

Solids

(To within our \sim) Solids just atoms stacked next to each other
Mass Density: Mass/Volume

$$
\rho_{\text {solid }} \sim \frac{\mathrm{Zm}_{\mathrm{p}}}{\left(\mathrm{r}_{\mathrm{atom}}\right)^{3}} \sim \mathrm{Z}^{4} \alpha^{3} \mathrm{~m}_{\mathrm{p}} \mathrm{~m}_{\mathrm{e}}^{3}
$$

Pressure of Solid: Force/Area or Energy/Volume

$$
\mathrm{P}_{\mathrm{solid}} \sim \frac{\mathrm{Z}^{2} \alpha^{2} \mathrm{~m}_{\mathrm{e}}}{\left(\mathrm{r}_{\text {atom }}\right)^{3}} \sim \mathrm{Z}^{5} \alpha^{5} \mathrm{~m}_{\mathrm{e}}^{4}
$$

Solids

(To within our \sim) Solids just atoms stacked next to each other
Mass Density: Mass/Volume

$$
\rho_{\mathrm{solid}} \sim \frac{\mathrm{Zm}_{\mathrm{p}}}{\left(\mathrm{r}_{\mathrm{atom}}\right)^{3}} \sim \mathrm{Z}^{4} \alpha^{3} \mathrm{~m}_{\mathrm{p}} \mathrm{~m}_{\mathrm{e}}^{3}
$$

Pressure of Solid: Force/Area or Energy/Volume

$$
\mathrm{P}_{\mathrm{solid}} \sim \frac{\mathrm{Z}^{2} \alpha^{2} \mathrm{~m}_{\mathrm{e}}}{\left(\mathrm{r}_{\text {atom }}\right)^{3}} \sim \mathrm{Z}^{5} \alpha^{5} \mathrm{~m}_{\mathrm{e}}^{4}
$$

(Ratio of two give the speed of sounds)
$\mathrm{v}_{\text {sound }} \sim \sqrt{\frac{\mathrm{P}_{\text {solid }}}{\rho_{\text {solid }}}} \sim \sqrt{\frac{\alpha}{\mathrm{m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}}}$

Predict: $\sim 25,000 \mathrm{~m} / \mathrm{s}$ Beryllium 12,890 m/s Diamond $12,000 \mathrm{~m} / \mathrm{s}$ Steel $\quad 6000 \mathrm{~m} / \mathrm{s}$

Planets

Solids where gravitational pressure balanced by solid pressure

Planets

Solids where gravitational pressure balanced by solid pressure

$$
\mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{\mathrm{V}_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}}
$$

Planets

Solids where gravitational pressure balanced by solid pressure

$$
\begin{aligned}
& \mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{V_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}} \\
& \mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}}
\end{aligned}
$$

Planets

Solids where gravitational pressure balanced by solid pressure

$$
\begin{aligned}
& \mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{V_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}} \\
& \mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}} \\
& \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}}
\end{aligned}
$$

Planets

Solids where gravitational pressure balanced by solid pressure
$\mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{\mathrm{V}_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}}$
$\mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}}$
$\mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}}$
$\mathrm{P}_{\text {Gravity }} \sim \mathrm{P}_{\text {solid }}$

$$
\frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}} \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}^{4}}
$$

Planets

Solids where gravitational pressure balanced by solid pressure
$\mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{V_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}}$
$\mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}}$
$\mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}}$
$\mathrm{P}_{\text {Gravity }} \sim \mathrm{P}_{\text {solid }} \quad \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}} \sim \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}^{4}}$
$R_{\text {Planet }} \sim \sqrt{\frac{1}{\mathrm{G}_{\mathrm{N}} \mathrm{m}_{\mathrm{p}}^{2} Z^{3} \alpha \mathrm{~m}_{\mathrm{e}}^{2}}} \sim \sqrt{\frac{\alpha}{\alpha_{\mathrm{G}}}} \times \mathrm{r}_{\text {atom }}$

Planets

Solids where gravitational pressure balanced by solid pressure

$$
\begin{aligned}
& \mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{\mathrm{V}_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}} \\
& \mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}} \\
& \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}} \\
& \mathrm{P}_{\text {Gravity }} \sim \mathrm{P}_{\text {solid }} \quad \begin{array}{c}
\begin{array}{c}
\text { Planets/atoms relative size direct } \\
\text { result of EM vs gravity strength }
\end{array} \\
r_{\text {atom }} \text { ratom }^{\text {ratom }}
\end{array} \\
& \mathrm{R}_{\text {Planet }} \sim \sqrt{\frac{1}{\mathrm{G}_{\mathrm{N}} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{Z}^{3} \alpha \mathrm{~m}_{\mathrm{e}}^{2}}} \sim \sqrt{\frac{\alpha}{\alpha_{\mathrm{G}}}} \times \mathrm{r}_{\text {atom }}
\end{aligned}
$$

Planets

Solids where gravitational pressure balanced by solid pressure

$$
\begin{aligned}
& \mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{\mathrm{V}_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}} \\
& \mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}} \\
& \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}} \\
& \mathrm{P}_{\text {Gravity }} \sim \mathrm{P}_{\text {solid }} \quad \begin{array}{c}
\begin{array}{c}
\text { Planets/atoms relative size direct } \\
\text { result of EM vs gravity strength }
\end{array} \\
r_{\text {atom }}^{r_{\text {atom }}}
\end{array} \\
& \mathrm{R}_{\text {Planet }} \sim \sqrt{\frac{1}{\mathrm{G}_{\mathrm{N}} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{Z}^{3} \alpha \mathrm{~m}_{\mathrm{e}}^{2}}} \sim \sqrt{\frac{\alpha}{\alpha_{\mathrm{G}}}} \times \mathrm{r}_{\text {atom }}
\end{aligned}
$$

This is why things are big, despite being governed by microscopic laws

Planets

Solids where gravitational pressure balanced by solid pressure

$$
\begin{aligned}
& \mathrm{E}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}} \quad \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{E}_{\text {Gravity }}}{\mathrm{V}_{\text {Planet }}} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{M}_{\mathrm{p}}^{2}}{\mathrm{R}_{\mathrm{p}}^{4}} \\
& \mathrm{M}_{\text {Planet }} \sim \rho_{\text {solid }} \times \mathrm{R}_{\mathrm{P}}^{3} \sim \frac{\mathrm{Zm}_{\mathrm{p}} \mathrm{R}_{\mathrm{P}}^{3}}{\mathrm{r}_{\text {atom }}^{3}} \\
& \mathrm{P}_{\text {Gravity }} \sim \frac{\mathrm{G}_{\mathrm{N}} \mathrm{Z}^{2} \mathrm{~m}_{\mathrm{p}}^{2} \mathrm{R}_{\mathrm{P}}^{2}}{\mathrm{r}_{\text {atom }}^{6}} \\
& \mathrm{P}_{\text {Gravity }} \sim \mathrm{P}_{\text {solid }} \quad \begin{array}{|}
\text { Planets/atoms relative size direct } \\
\text { result of EM vs gravity strength }
\end{array} \\
& \mathrm{r}_{\text {atom }}^{\mathrm{r}_{\text {atom }}}
\end{aligned}
$$

$\begin{array}{llr}\text { Prediction: } & \mathrm{r}_{\mathrm{e}} \sim 10^{7} \mathrm{~m} & \mathrm{~m}_{\mathrm{e}} \sim 10^{25} \mathrm{~kg} \\ \text { Actual: } & 6.4 \cdot 10^{6} \mathrm{~m} & 5.9 \cdot 10^{24} \mathrm{~kg}\end{array} \overline{\mathrm{G}} \times \mathrm{r}_{\text {atom }}$
This is why things are big, despite being governed by microscopic laws

Life

Estimate limit on size of life: Require dont break bones when fall

Life

Estimate limit on size of life: Require dont break bones when fall $\mathrm{E}_{\text {fall }} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$

Life

Estimate limit on size of life: Require dont break bones when fall
$\mathrm{E}_{\text {fall }} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$
$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}}$

Life

Estimate limit on size of life: Require dont break bones when fall
$\mathrm{E}_{\text {fall }} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$
$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}}$

Prediction:	$\sim 5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
Actual:	$9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Life

Estimate limit on size of life: Require dont break bones when fall
$\mathrm{E}_{\text {fall }} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$

$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}} \quad$| Prediction: $\begin{array}{l}\sim 5 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ \text { Actual: } \\ 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}\end{array}$ |
| :--- |

Break bones along cross sectional areas
$\mathrm{E}_{\text {Break Bones }} \sim \mathrm{N}_{\text {atoms cross-section }} \times \mathrm{E}_{\text {atom }}$

Life

Estimate limit on size of life: Require dont break bones when fall
$\mathrm{E}_{\text {fall }} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$

$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}} \quad$| Prediction: $\sim 5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ |
| :--- |
| Actual: $\begin{array}{l}\quad 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}\end{array}$ |

Break bones along cross sectional areas
$\mathrm{E}_{\text {Break Bones }} \sim \mathrm{N}_{\text {atoms cross-section }} \times \mathrm{E}_{\text {atom }}$

$$
\sim\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{r}_{\text {atom }}}\right)^{2} \times \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}}
$$

Life

Estimate limit on size of life: Require dont break bones when fall
$\mathrm{E}_{\text {fall }} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$

$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}} \quad$| Prediction: $\begin{aligned} & \sim 5 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & \text { Actual: } 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}\end{aligned}$ |
| :--- |

Break bones along cross sectional areas

$\mathrm{E}_{\text {Break Bones }} \sim \mathrm{N}_{\text {atoms cross-section }} \times \mathrm{E}_{\text {atom }}$

$$
\sim\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{r}_{\text {atom }}}\right)^{2} \times \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}}
$$

$\mathrm{E}_{\text {Fall }} \sim \mathrm{E}_{\text {Break Bones }}$

Life

Estimate limit on size of life: Require dint break bones when fall
$\mathrm{E}_{\mathrm{fall}} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$
$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}} \quad \begin{aligned} & \text { Prediction: } \sim 5 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & \text { Actual: } \\ & 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}\end{aligned}$

Break bones along cross sectional areas

$\mathrm{E}_{\text {Break Bones }} \sim \mathrm{N}_{\text {atoms cross-section }} \times \mathrm{E}_{\text {atom }}$

$$
\sim\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{r}_{\text {atom }}}\right)^{2} \times \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}}
$$

$\mathrm{E}_{\text {Fall }} \sim \mathrm{E}_{\text {Break Bones }}$

$$
\mathrm{L}_{\mathrm{A}} \sim\left(\frac{\alpha}{\alpha_{\mathrm{G}}}\right)^{\frac{1}{4}} \times \mathrm{r}_{\text {atom }} \quad \mathrm{M}_{\mathrm{A}} \sim\left(\frac{\alpha}{\alpha_{\mathrm{G}}}\right)^{\frac{3}{4}} \times \mathrm{Zm}_{\mathrm{p}}
$$

Life

Estimate limit on size of life: Require dint break bones when fall
$\mathrm{E}_{\mathrm{fall}} \sim \mathrm{M}_{\mathrm{A}} \mathrm{g}_{\text {local }} \mathrm{L}_{\mathrm{A}}$

$\mathrm{g}_{\text {local }} \sim \mathrm{G}_{\mathrm{N}} \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}^{2}} \sim \sqrt{\alpha_{\mathrm{G}} \alpha} \frac{1}{\mathrm{~m}_{\mathrm{p}} \mathrm{r}_{\text {atom }}^{2}} \quad$| Prediction: $\begin{aligned} & \sim 5 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & \text { Actual: } 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}\end{aligned}$ |
| :--- |

Break bones along cross sectional areas

$\mathrm{E}_{\text {Break Bones }} \sim \mathrm{N}_{\text {atoms cross-section }} \times \mathrm{E}_{\text {atom }}$

$$
\sim\left(\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{r}_{\text {atom }}}\right)^{2} \times \frac{\mathrm{Z} \alpha}{\mathrm{r}_{\text {atom }}}
$$

$$
\begin{aligned}
\mathrm{E}_{\text {Fall }} & \sim \mathrm{E}_{\mathrm{B}} \xrightarrow[\mathrm{LA}]{ } \sim 10 \mathrm{~cm} / \mathrm{MA} \sim 100 \mathrm{~kg} \\
\mathrm{~L}_{\mathrm{A}} & \sim\left(\frac{\alpha}{\alpha_{\mathrm{G}}}\right)^{\frac{1}{4}} \times \mathrm{r}_{\text {atom }} \quad \mathrm{M}_{\mathrm{A}} \sim\left(\frac{\alpha}{\alpha_{\mathrm{G}}}\right)^{\frac{3}{4}} \times \mathrm{Zm}_{\mathrm{p}}
\end{aligned}
$$

Lecture Outline

April 1st: Newton's dream \& 20th Century Revolution
April 8th: Mission Barely Possible: QM + SR
April 15th: The Standard Model
April 22nd: Importance of the Higgs
April 29th: Guest Lecture
May 6th: The Cannon and the Camera
May 13th: The Discovery of the Higgs Boson
May 20th: Problems with the Standard Model
May 27th: Memorial Day: No Lecture
June 3rd: Going beyond the Higgs: What comes next ?

Lecture Outline

April 1st: Newton's dream \& 20th Century Revolution
April 8th: Mission Barely Possible: QM + SR
April 15th: The Standard Model
April 22nd: Importance of the Higgs
April 29th: Guest Lecture
May 6th: The Cannon and
May 13th: The Discovery of
May 20th: Problems with th
May 27th: Memorial Day: I
June 3rd: Going beyond th

Sources:

- Nima Arkani-Hamed
- John Barrow
- Matt Strassler
- Leonard Susskind
- Frank Tipler
- Steven Weinberg

I will keep this list up to date as we go along.

Last Time: The Standard Model

Description fundamental constituents of Universe and their interactions Triumph of the 20th century
Quantum Field Theory: Combines principles of Q.M. \& Relativity
Constituents (Matter Particles)
Spin $=1 / 2$
Leptons: $\binom{\nu_{\mathrm{e}}}{\mathrm{e}} \quad\binom{\nu_{\mu}}{\mu} \quad\binom{\nu_{\tau}}{\tau}$

Quarks:
$\binom{\mathrm{u}}{\mathrm{d}} \quad\binom{\mathrm{c}}{\mathrm{s}} \quad\binom{\mathrm{t}}{\mathrm{b}}$
Interactions Dictated by principles of symmetry
QFT \Rightarrow Particle associated w/each interaction (Force Carriers)
γ
W
Z
g

Last Time: The Standard Model

Description fundamental constituents of Universe and their interactions Triumph of the 20th century
Quantum Field Theory: Combines principles of Q.M. \& Relativity
Constituents (Matter Particles)
Spin $=1 / 2$
Leptons:

$$
\binom{\nu_{\mathrm{e}}}{\mathrm{e}} \quad\binom{\nu_{\mu}}{\mu} \quad\binom{\nu_{\tau}}{\tau}
$$

Quarks:

$$
\binom{\mathrm{u}}{\mathrm{~d}} \quad\binom{\mathrm{c}}{\mathrm{~s}} \quad\binom{\mathrm{t}}{\mathrm{~b}}
$$

Interactions Dictated by principles of symmetry
QFT \Rightarrow Particle associated w/each interaction (Force Carriers)
γ
W
Z
g

Consistent theory of electromagnetic, weak and strong forces provided massless Matter and Force Carriers

Last Time: The Standard Model

Description fundamental constituents of Universe and their interactions Triumph of the 20th century
Quantum Field Theory: Combines principles of Q.M. \& Relativity
Constituents (Matter Particles)
Spin $=1 / 2$
Leptons:

$$
\binom{\nu_{\mathrm{e}}}{\mathrm{e}} \quad\binom{\nu_{\mu}}{\mu} \quad\binom{\nu_{\tau}}{\tau}
$$

Quarks:
$\binom{\mathrm{u}}{\mathrm{d}} \quad\binom{\mathrm{c}}{\mathrm{s}} \quad\binom{\mathrm{t}}{\mathrm{b}}$

Interactions Dictated by principles of symmetry
QFT \Rightarrow Particle associated w/each interaction (Force Carriers)

$$
\begin{array}{llll}
\gamma & \mathrm{W} & \mathrm{Z} & \mathrm{~g}
\end{array}
$$

Consistent theory of electromagnetic, weak and strong forces provided massless Matter and Force Carriers
Serious problem: matter and W, Z carriers have Mass !

Today's Lecture

The Importance of the Higgs

Today's Lecture

The Importance of the Higgs

"The Higgs Boson (or "God Particle") is Responsible For All Mass in the Universe"

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)
Matter particles have spin $1 / 2 . \quad Q M \Rightarrow$ Only two ways they can spin
Aligned with direction of motion

"Right-handed"

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)
Matter particles have spin $1 / 2 . \quad Q M \Rightarrow$ Only two ways they can spin

Aligned with direction of motion

"Right-handed"

Against with direction of motion

"Left-handed"

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)
Matter particles have spin $1 / 2 . \quad Q M \Rightarrow$ Only two ways they can spin

Aligned with direction of motion

"Right-handed"

Against with direction of motion

"Left-handed"

QFT tells us that massive particles can flip back and forth...

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)
Matter particles have spin $1 / 2 . \quad Q M \Rightarrow$ Only two ways they can spin

Aligned with direction of motion

"Right-handed"

Against with direction of motion

"Left-handed"

QFT tells us that massive particles can flip back and forth...

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)
Matter particles have spin $1 / 2 . \quad Q M \Rightarrow$ Only two ways they can spin

Aligned with direction of motion

"Right-handed"

Against with direction of motion

"Left-handed"

QFT tells us that massive particles can flip back and forth...

\ldots and the size of the mass sets the rate (probability) for flipping. The heavier the particle the more it flips.

What's the Problem with Mass?

All goes back spin (Forced on us by $Q M+R$)
Matter particles have spin $1 / 2 . \quad Q M \Rightarrow$ Only two ways they can spin

Aligned with direction of motion

"Right-handed"

Against with direction of motion

"Left-handed"

QFT tells us that massive particles can flip back and forth...

\ldots and the size of the mass sets the rate (probability) for flipping. The heavier the particle the more it flips.

What's the Problem with Mass?

B/c electrons have
Charge

What's the Problem with Mass?

B/c electrons have Charge

B/c electrons have Hyper-charge

What's the Problem with Mass?

B/c electrons have Charge

B/c electrons have Hyper-charge

Now the crazy part...

What's the Problem with Mass?

B/c electrons have Charge

B/c electrons have Hyper-charge

Now the crazy part...
Left -handed particles have Hyper-charge = 1
Right-handed particles have Hyper-charge $=0$

What's the Problem with Mass?

B/c electrons have Hyper-charge

Now the crazy part...
Left -handed particles have Hyper-charge $=1$
Right-handed particles have Hyper-charge $=0$

What's the Problem with Mass?

B/c electrons have Hyper-charge

Now the crazy part...
Left -handed particles have Hyper-charge $=1$
Right-handed particles have Hyper-charge $=0$
This + particle masses immediately leads to contradiction:

H-charge: 0
1

What's the Problem with Mass?

B/c electrons have Hyper-charge

Now the crazy part...
Left -handed particles have Hyper-charge = 1
Right-handed particles have Hyper-charge $=0$

One hand:

QFT tells us that massive particles can flip back and forth.
SM these have different H-charges $\Rightarrow \boldsymbol{H}$-charge not conserved
Other hand:
QFT tells us that all charge must be conserved! (Basic conseq. QM +R)
H-charge: 0

Get around this with the Higgs Field

Get around this with the Higgs Field

What is a field?
Field: mapping of number (or set of numbers) to each point in space

Get around this with the Higgs Field

What is a field?
Field: mapping of number (or set of numbers) to each point in space You are familiar with fields:

- Temperature map: number at each location
- Wind map: arrow (pair of numbers) at each location

Get around this with the Higgs Field

What is a field?
Field: mapping of number (or set of numbers) to each point in space You are familiar with fields:

- Temperature map: number at each location
- Wind map: arrow (pair of numbers) at each location

Most fields cost energy for being on:

Get around this with the Higgs Field

What is a field?
Field: mapping of number (or set of numbers) to each point in space You are familiar with fields:

- Temperature map: number at each location
- Wind map: arrow (pair of numbers) at each location

Most fields cost energy for being on:

Warm-up with example of how a field can affect mass

Mass from Field: Example

Water molecules are little dipoles:

Mass from Field: Example

Water molecules are little dipoles:
Consider only two orientations

\uparrow-Up-water $\quad \downarrow$ - Down-water

Mass from Field: Example

Water molecules are little dipoles: Consider only two orientations

\uparrow-Up-water $\quad \downarrow$ - Down-water

- Mass of $\boldsymbol{U} \boldsymbol{p}$ and Down water same
- Space is symmetric

Mass from Field: Example

Water molecules are little dipoles:

 Consider only two orientations
\uparrow-Up-water $\quad \downarrow$ - Down-water

- Mass of $\boldsymbol{U p}$ and Down water same
- Space is symmetric

Now, break the symmetry by external electric field pointing up:

Battery forms
Electric Field

Mass from Field: Example

Water molecules are little dipoles:

 Consider only two orientations$\sigma$$\uparrow$-Up-water $\quad \downarrow$-Down-water

- Mass of $\boldsymbol{U} \boldsymbol{p}$ and Down water same
- Space is symmetric

Now, break the symmetry by external electric field pointing up:

Mass from Field: Example

Water molecules are little dipoles:

 Consider only two orientations

- Mass of $\boldsymbol{U} \boldsymbol{p}$ and Down water same
- Space is symmetric

Now, break the symmetry by external electric field pointing up:

Example of how a field can creates mass for a particle
Note: No net force on the water molecule
Not like the water getting stuck in some kind of molasses!

Mass from Field: Example

We know this electric force mediated by photons γ

Mass from Field: Example

We know this electric force mediated by photons γ

Photons are constantly being created/absorbed by the charged plates

Mass from Field: Example

We know this electric force mediated by photons γ

Photons are constantly being created/absorbed by the charged plates Point of view of water molecule:

- Lives in place where can add or remove γ with changing anything
- Space ("vacuum") filled with Condensate of photons

Mass from Field: Example

We know this electric force mediated by photons γ

Photons are constantly being created/absorbed by the charged plates Point of view of water molecule:

- Lives in place where can add or remove γ with changing anything
- Space ("vacuum") filled with Condensate of photons

Mass from Field: Example

We know this electric force mediated by photons γ

Photons are constantly being created/absorbed by the charged plates Point of view of water molecule:

- Lives in place where can add or remove γ with changing anything
- Space ("vacuum") filled with Condensate of photons

In this example, γ condensate is created by the battery ("Turns field On")

Turning the Higgs Field On

For the Higgs field don't use batteries or charged plate, instead... Use a trick called "Spontaneous Symmetry Breaking"

Turning the Higgs Field On

For the Higgs field don't use batteries or charged plate, instead... Use a trick called "Spontaneous Symmetry Breaking"

Turning the Higgs Field On

For the Higgs field don't use batteries or charged plate, instead... Use a trick called "Spontaneous Symmetry Breaking"

Turning the Higgs Field On

For the Higgs field don't use batteries or charged plate, instead... Use a trick called "Spontaneous Symmetry Breaking"

The form of the Higgs potential energy enough to turn the field on

Turning the Higgs Field On

For the Higgs field don't use batteries or charged plate, instead... Use a trick called "Spontaneous Symmetry Breaking"

The form of the Higgs potential energy enough to turn the field on This functional form is also an input to the theory

Turning the Higgs Field On

For the Higgs field don't use batteries or charged plate, instead... Use a trick called "Spontaneous Symmetry Breaking"

The form of the Higgs potential energy enough to turn the field on This functional form is also an input to the theory

Form a condensate (\boldsymbol{v}-condensate) just as in our previous example QM effect related to shape of potential. (Analogous to Superconductivity)

Does all mass come from Higgs Field?

Does all mass come from Higgs Field?

No!

Example:

Ultra-light
 reflective walls

Does all mass come from Higgs Field?

No!

Example:

Ultra-light
reflective walls

Proton:

Does all mass come from Higgs Field?

No!

Example:

Ultra-light

reflective walls

Proton:

Most of the mass in the universe (protons) not from the Higgs Field!

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate
Critical Point: v-condensate has hyper-charge $=1$

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate
Critical Point: v-condensate has hyper-charge $=1$

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate
Critical Point: v-condensate has hyper-charge $=1$

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate
Critical Point: v-condensate has hyper-charge $=1$

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate
Critical Point: v-condensate has hyper-charge $=1$

Higgs Field: Mass to Matter

How does it work for matter particles?
As in the example, but using the v-condensate
Critical Point: v-condensate has hyper-charge $=1$

Interaction of matter particles w / v-condensate that allows mass Can change between right and left-handed in a way that conserves charge

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference. Both Left and Right states of W/Z have hyper charge 0

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference. Both Left and Right states of W/Z have hyper charge 0

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference.
Both Left and Right states of W/Z have hyper charge 0 Need new particles: " Ω "

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference.
Both Left and Right states of W/Z have hyper charge 0 Need new particles: " Ω "

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference.
Both Left and Right states of W/Z have hyper charge 0 Need new particles: " Ω "

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference.
Both Left and Right states of W/Z have hyper charge 0 Need new particles: " Ω " and " ω "

Higgs Field: Mass to W \& Z

Similar effect gives mass to W/Z particles: One crucial difference.
Both Left and Right states of W/Z have hyper charge 0 Need new particles: " Ω " and " ω "

Ω and ω are also referred to as "Longitudinal polarizations of W/Z"

What about the Higgs Boson?

What about the Higgs Boson?

What is the probability to scatter $\omega+/-$?

What about the Higgs Boson?

What is the probability to scatter $\omega+/-$?

What about the Higgs Boson?

What is the probability to scatter $\omega+/-$?

(putting all the correct factors)

- $\mathrm{P}>1$ when $\mathrm{E} \sim 1200 \mathrm{GeV}$
- Theory breaking down at $\sim 1 \mathrm{TeV}$
- Something clearly missing when we get to 1 TeV

The Higgs Boson

Requires another new particle: h
That couples to ω^{+}

h sound waves is the Higgs field condensate

What about the Higgs Boson?

Have to include all terms:

Fixes the inconsistent behavior at high Energy Have sensible theory again!

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \boldsymbol{L o t}}$

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$
Higgs is excitations of v-condensate
\Rightarrow Couples to matter / W/Z just like v . .

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$
Higgs is excitations of v-condensate \Rightarrow Couples to matter / W/Z just like v . .

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$
Higgs is excitations of v-condensate \Rightarrow Couples to matter / W/Z just like v . .

Spin: $\begin{array}{llllll}0 & 1 / 2 & 1 & 3 / 2 & 2\end{array}$

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$

Higgs is excitations of v-condensate \Rightarrow Couples to matter / W/Z just like v . .

Spin:

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$

Higgs is excitations of v-condensate \Rightarrow Couples to matter / W/Z just like v . .
matter: e $\mu \tau$ / quarks W/Z

Spin:

1 位

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$

Higgs is excitations of v-condensate \Rightarrow Couples to matter / W/Z just like v . .
matter: e $\mu \tau$ / quarks W/Z

Spin:

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \text { Lot }}$

Higgs is excitations of v-condensate
\Rightarrow Couples to matter / W/Z just like v . .
matter: e $\mu \tau$ / quarks W/Z
$\xrightarrow{\left\lvert\, \begin{array}{l}\text { bosons } \\ \text { fermions }\end{array}\right.} \begin{aligned} & \text { - QM }+\mathrm{R} \Rightarrow \text { Only } 1 \text { Spin- } 2 \text { interaction allowed: Graviton } \\ & \text { Mass/coupling needed for Higgs inconsistent } \\ & \text { - Massive Spin-1 in a reason we are in this mess! } \\ & \text { Would need another condensate to explain mH }\end{aligned}$
Spin: (0) $1 \times\left({ }^{\circ} \cdot x \cdot 3<2<\right.$

The Higgs Boson

What do we know about the Higgs Particle: $\underline{\boldsymbol{A} \boldsymbol{L o t}}$

Higgs is excitations of v-condensate
\Rightarrow Couples to matter / W/Z just like v . .
matter: e $\mu \tau$ / quarks W/Z

Only thing we don't (didn't!) know is the value of mH
"The Higgs Boson (or "God Particle") is Responsible For All Mass in the Universe"
"The Higgs Boson (or "God Partiele") is Responsible
For All Mass in the Universe"

Field

"The Higgs Boson (or "God Particle") is Responsible For All Mass in the Universe"

Field

"The Higgs Boson (or "God Particle") is Responsible For All Mass in the Universe"

Some (Very Important!) Mass

Field

"The Higgs Boson (or "God Particle") is Responsible For All Mass in the Universe"

Some (Very Important!) Mass

$$
\mathrm{L}_{\mathrm{A}} \sim\left(\frac{\alpha}{\alpha_{\mathrm{G}}}\right)^{\frac{1}{4}} \times \frac{1-=}{\mathrm{Zam}_{\mathrm{e}}}
$$

