How and Why to go Beyond the Discovery of the Higgs Boson

John Alison

University of Chicago

http://hep.uchicago.edu/~johnda/ComptonLectures.html

Lecture Outline

- April 1st: Newton's dream & 20th Century Revolution
- **April 8th:** Mission Barely Possible: QM + SR
- April 15th: The Standard Model
- **April 22nd: Importance of the Higgs**
- April 29th: Guest Lecture
- May 6th: The Cannon and the Camera
- May 13th: The Discovery of the Higgs Boson
- May 20th: Problems with the Standard Model
- May 27th: Memorial Day: No Lecture
- June 3rd: Going beyond the Higgs: What comes next?

A lot of work goes into making/understanding these basic outputs.

Today's Lecture

The Discovery of the Higgs Boson

How to Make Higgs Bosons?

How to Make Higgs Bosons

We really want to use processes like:

 \Rightarrow Have to make tops and W/Z from protons first

Vector-Bosons Fusion

Where to look for the Higgs Boson?

Mass constraints pre-LHC

50 < mH < 150 GeV (95%)

Limits from direct search Large Electron-Positron collider (LEP)

mH > 115 GeV

How to look for the Higgs Boson?

Higgs Boson quickly decays to other particles.

- Basic Higgs interactions control how the Higgs can decay
- Fraction of decays to particular particle is: *Branching Ratio*

Higgs wants to decay to heaviest particle around (provided: $m_X < m_H/2$)

How to look for the Higgs Boson?

How much data do we need ?

Estimate out how often we make a Higgs.

Warm-up: How often do we make a W/Z? $\sigma_{W/Z} \sim \frac{\alpha_W}{(m_{W/Z})^2} \sim (\frac{1}{50})(\frac{1}{100})^2 \text{ GeV}^{-2} \bigvee_{q}^{W/Z}$ $\sim 2 \cdot 10^{-6} \text{ GeV}^{-2}$

 $\sigma_{\rm pp} \sim {\rm GeV^{-2}} \Rightarrow 1 {\rm W/Z}$ for every 1 million proton collisions

How much data do we need ?

First estimate out how often we make a Higgs.

 $\sigma_{\rm pp} \sim {\rm GeV^{-2}} \Rightarrow 1$ Higgs for every billion proton collisions

Good target:
$$\sim 100 \frac{h \rightarrow \gamma \gamma}{\text{year}} \sim 10^5 \frac{h}{\text{year}} \frac{\text{year}}{\epsilon \cdot 10^7 \text{s}} \sim 1 \frac{h}{\text{second}}$$

 \Rightarrow need billion proton collisions per second

Only have beams crossing 40 million times per second ... ⇒ Need ~25 proton collisions per crossing !

Higgs Discovery

Higgs Post-Discovery What We Know and Where We are Going

Higgs Program Beyond Discovery

Establish signals in harder channels: $h \rightarrow \tau \tau$ (done) / direct $h \rightarrow tt$ (close) / $h \rightarrow bb$ (close)

Compare measured/predicted interaction strengths - Study production cross sections and branching ratios

Measure Spin of new particle

Search for un-predicted decays

Results: Production Cross Section

Results: Interaction Strengths

- Massive Spin 1 resonance cannot decay to $\gamma\gamma$ (QM+Relativity) - Use decay angle to separate spin 0 and 2

Current statistics allow a limited number of tests of data w.r.t expectation.

In practice introduce coupling modifiers " κ ", where $\kappa = 1$ is SM.

Examples:

Test against few specific benchmark scenarios.

Test loops diagrams

Test loops diagrams and unknown decays

What we don't know

- If established couplings modified at level of $\leq 20\%$
- If Higgs decays in unexpected way $\leq 30\%$ of the time
- Lots of un-observed interactions

- Very important unobserved interaction: H

Higgs self-interaction:

Measure Potential with hh

Energy of Higgs field: Higgs potential

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Expanding about minimum: $V(\phi) \rightarrow V(v+h)$

$$\frac{\mu}{\sqrt{\lambda}} \equiv v$$
 246 GeV

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

= $V_0 + \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \frac{1}{4} \frac{m_h^2}{2v^2} h^4$
Higgs mass term
$$\lambda_{hhh} = \frac{\lambda_{hhh}}{2v^2}$$

Standard Model:
$$\lambda_{hhh} = \frac{m_h^2}{2v^2}$$

- Shape of potential gives relationship between λ_{hhh} and m_h , v
- Measuring λ_{hhh} important probes the shape of the Higgs potential
- *hh* production interesting because it measures λhhh

SM hh Production at the LHC

Small in Standard Model

- Leading hh diagrams higher order in series (have extra vertices)
- 2 heavy particles (fraction of proton energy needed larger)
- Two diagrams with relative minus sign

Production Diagrams:

hh Decay

Di-Higgs

Ultimate goal in the program to measure the Higgs

- Direct probe of shape of Higgs potential
- Deep connections w/fundamental problems associated to the Higgs boson.

Pick up here next time.