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[Lecture Outline

April 1st: Newton’s dream & 20th Century Revolution
April 8th:  Mission Barely Possible: QM + SR

April 15th: The Standard Model

April 22nd: Importance of the Higgs

April 29th: Guest Lecture

May 6th: The Cannon and the Camera

May 13th: The Discovery of the Higgs Boson

May 20th: Problems with the Standard Model

May 27th:  Memorial Day: No Lecture
June 3rd:  Going beyond the Higgs: What comes next ?
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2012: Discovered new particle gansistent with expectations

>
£

'|""l"'l|1|1l|261|2 ¥>
= LA 2011 -
:2; [ ATLAS I ag o’ + Best fit S l/ﬁ= 7 TeV, 4.5-4.7 51

S ys=7TeV: JLdt=4.7-4 — 68% CL w s=8TeV 1
% 3 vz _gTeV: [Ldt=58590" ----95% CL S I> 203 b
2 .,  Hoy « 107 — Observeq
® ar —H-2Z" > "= SM Expected
% N
2
1072
10°°

Particle mass [GeV]

Since then: Significant improvement in sensitivity

Agreement with Higgs interpretation ~20% level
No sign of any deviations




What 1t Took: In Numbers

- >10,000 scientists and engineers from 85 countries

- 277 kilometer particle accelerator

- Protons moving at 99.9999993% the speed of light

- ~1 billion proton collisions / second (for 2 years)

- Total budget: ~10 billions dollars

- Detectors - size of apartment buildings - operating at 40 MHz
- Generate 80 TB/s (~10 % size of library of congress )

- (Salary of physicist) << (Salary of banker or engineer)

What is the Higgs boson ?2!?

Why did we need such extremes to find it ?

Why look for the Higgs boson in the first place ?
Are we done now that we have found it ?
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Today’s Lecture

Problems with the Standard Model
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Length Scales

Failure WW scattering —» Standard Model (Before Higgs Discove
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(In principle) L ength S C al CS

™ Standard Model (After Higgs Discovery)
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Another reason why the Higgs was such a big deal !
Now (first time ever?) have theory can be extrapolated to
exponentially higher energies.
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Length Scales

(In principle)
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All intermediate scales directly set by basic fundamental
physical parameters (Seen explicit examples of some of these)
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Fundamental Length Scales

(In principle)
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e £ UNdamental Length Scales
™ Standard Model (After Higgs Discovery)
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Weak scale: Fundamental scale in physics

- Scale associated with fundamental particle masses

- Typical at which massive particles interact with Higgs field

- The first time start seeing the forces have same underlying structure
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Fundamental Length Scales

Standard Model (After Higgs Discovery)

Failure WW scattering —» Standard Model (Before Higgs Discove
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LHC exciting both because:
- it 1s the frontier but also
- exploring fundamental scale of nature
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Weak scale: Fundamental scale in physics

- Scale associated with fundamental particle masses

- Typical at which massive particles interact with Higgs field

- The first time start seeing the forces have same underlying structure
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Fundamental Length Scales

(In principle)
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- Large range, but not infinite.
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- Claim: Everything we know, and can possibly know, within this range
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e £ UNdamental Length Scales
> Standard Model (After Higgs Discovery)

Failure WW scattering —» Standard Model (Before Higgs Discove
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- Large range, but not infinite.

- Claim: Everything we know, and can possibly know, within this range

- Upper bound set by finite upper speed limit (finite age of universe)

- Talk about lower bound, next. Believed to really be hard lower bound

- Deep mysteries/problems with SM directly associated with each
fundamental scale
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Problem with the Planck Scale



Relative Strength of Gravity

Electromagnetic Interaction
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Relative Strength of Gravity
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Relative Strength of Gravity

Electromagnetic Interaction
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Relative Strength of Gravity

Electromagnetic Interaction

| __ e’ 1 r.-@mp
At short distances, (comparable to {ri) gravitational interaction dominates
- LrL the scale at which gravity 1s becoming strong
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Probing Smaller Distance Scales
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- Eventually reach point where gravitational interaction dominates
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Probing Smaller Distance Scales

10720 GeV—1 1073 GeV~! 104 GevV—1!
(107°° m) (10719 m) (10%° m)
Planck Weak Hubble

~unexplored
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\

- Say we decided to probe smaller and smaller distance scales

- Build collider, go to higher and higher energies

- Eventually reach point where gravitational interaction dominates
- Continue to smaller distance ... then something new happens...
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Create Black Holes !

Some point put so much energy into collisions that you create black hole
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Create Black Holes !

Some point put so much energy into collisions that you create black hole
Estimate scale when this happens:
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Create Black Holes !

Some point put so much energy into collisions that you create black hole
Estimate scale when this happens:
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GNmT ~ IIlC2
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Create Black Holes !

Some point put so much energy into collisions that you create black hole
Estimate scale when this happens:
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GN HlT ~ m C2 At high energies, mass dominated

by E associated w/uncertainty principle
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Probing Smaller Distance Scales
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- Go to higher-higher energies... Gravity begins to dominate

Weak

» LHC Directly Probed Experimentally

Hubble

- At [Pl make blackhole / Cant tell whats happening in blackhole

- Even higher energies gives bigger blackhole
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Probing Smaller Distance Scales
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- Go to higher-higher energies... Gravity begins to dominate

- At [Pl make blackhole / Cant tell whats happening in blackhole

- Even higher energies gives bigger blackhole

- Nothing can do (in principle) to get information about smaller scales
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Probing Smaller Distance Scales

10720 GeV—1 1073 GeV~! 104 GevV—1!
(107%° m) (1019 m) (10%° m)
Planck Weak Hubble

~unexplored

» LHC Directly Probed Experimentally

\

- Go to higher-higher energies... Gravity begins to dominate

- At [Pl make blackhole / Cant tell whats happening in blackhole

- Even higher energies gives bigger blackhole

- Nothing can do (in principle) to get information about smaller scales

- Physics telling us that smaller scales dont exist
(Seen kind of thing before in QM and Relativity)
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Probing Smaller Distance Scales

| | 2 | aadl -r--_]_

10

qLower Limit to Spacetime

PIi Notion of space-time breaking down {P] /Not clear what replaces it.  [se

Major issue:
- Understanding of these short scales needed for:
- Early universe: What happened when universe curvature €PI

- Details of blackholes
- Physics 1s about what happens in space-time

Other hints that some dramatic need (“Holographic Principle”)
- Black hole information scales like area
- Observables with QM can in principle perfectly predict
- Toy models where see space emerging

(Scen Kind o1 thing betore 1 QM and Relativity)
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Problems with Weak and Hubble Scales



Problems with Weak and Hubble Scales

Problems associated with other two scales close related to one another
- Both come down to vacuum fluctuations
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Problems with Weak and Hubble Scales

Lecture 2

Combining Relat1v1ty and Quantum Mechamcs
- To preserve causality needed to Anti-particle must exist

- In turn, major implications on the vacuum:

AE > 2m,c? AE > 2m,,c?
2 Ax ~

e\./ A/XNHL \.// m,,
O\ . O\M+

€
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Vacuum Fluctuations ARE REAL !

Precisely predict magnetic properties
g/2 =1.0011596521809(8),
(Agree to better than one part in a trillion.)
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Vacuum Fluctuations ARE REAL !
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Vacuum Fluctuations ARE REAL !
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Vacuum Has Energy

Classically (w/o QM)

¢ <+— Lowest possible energy is 0
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Vacuum Has Energy

Classically (w/o QM)

¢ <+— Lowest possible energy is 0

Quantum World

Minimum non-zero energy: E~hm
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Vacuum Has Energy
Quantum World
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Vacuum Has Energy
Quantum World
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Vacuum Has Energy
Quantum World

Classically (w/o QM)

Minimum non-zero energy: E~hm

\ Ap

~_"

¢ <+— Lowest possible energy is 0 —
AX

Estimate energy density in region of empty space: Dimensional Analysis
AT T “I Smaller Box
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Vacuum Has Energy
Quantum World

Classically (w/o QM)

Minimum non-zero energy: E~hm
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¢ <+— Lowest possible energy is 0 —
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Estimate energy density in region of empty space: Dimensional Analysis
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Vacuum Has Energy
Quantum World

Classically (w/o QM)

Minimum non-zero energy: E~hm

\ Ap
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¢ <+— Lowest possible energy is 0 —
AX

Estimate energy density in region of empty space: Dimensional Analysis

A" —— - Smaller Box Reach: Cut-off
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) ...this is a problem
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Cosmological Constant Problem

Without gravity constant energies (A) can be ignored (overall offset)
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Uniform matter/energy controls size/expansion of overall Universe
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Cosmological Constant Problem

Without gravity constant energies (A) can be ignored (overall offset)
With gravity, constant energy warps space-time, interacts gravitationally

Uniform matter/energy controls size/expansion of overall Universe

1 1
tDouble VONA \/€P12A

- Natve cut off at bei: =  tp uple ~ 10743 s

(would be bad for atoms/planets/people...)
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Cosmological Constant Problem

Without gravity constant energies (A) can be ignored (overall offset)
With gravity, constant energy warps space-time, interacts gravitationally

Uniform matter/energy controls size/expansion of overall Universe

1 1
tDouble VONA \/€P12A

- Natve cut off at bei: =  tp uple ~ 10743 s

(would be bad for atoms/planets/people...)

- Conservative cut-off at 100 GeV: = tpouble ~ 10 1S

71



Cosmological Constant Problem
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Cosmological Constant Problem

Without gravity constant energies (A) can be ignored (overall offset)
With gravity, constant energy warps space-time, interacts gravitationally

Uniform matter/energy controls size/expansion of overall Universe

1 1
tDouble VONA \/€P12A

- Natve cut off at bei: =  tp uple ~ 10743 s

(would be bad for atoms/planets/people...)

- Conservative cut-off at 100 GeV: = tpouble ~ 10 1S
(would be bad for atoms(?)/planets/people...)

Measured: tpouble ~ 10" years = cut off of 10pm !
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Cosmological Constant Problem

Without gravity constant energies (A) can be ignored (overall offset)
With gravity, constant energy warps space-time, interacts gravitationally

aqnsion of overall Universe

Clearly SO

—~VIMeth;
£p bln
-Naive cut offat bri: = tpouple ~ 10743 s

Uniform matter/energy controls size/e

t 1
Double ™ Gu A

(would be bad for atoms/planets/people...)

- Conservative cut-off at 100 GeV: = tpouble ~ 10 1S
(would be bad for atoms(?)/planets/people...)

Measured: tpouble ~ 10" years = cut off of 10pm !
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?

A — AQM =+ AClassical
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?

from the vacuum fluctuations

/
A — AQM -+ AClassical
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?

from the vacuum fluctuations

~

A — AQM -+ AClassical “

Constant.
Input parameter to theory
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?

from the vacuum fluctuations

/ Constant.

A = Aom + Actassical Input parameter to theory

= 3.342 862210 ... 554... x {p*

f—————————
120 digits Aqu




Cosmological Constant Problem

How do we deal with this 1n the current theory ?

A

from the vacuum fluctuations

/ Constant.

= Aom T Aclassical Input parameter to theory

—————————
+ 120 digits

- 3.342 862 210 ... 541...
—_—

120 digits

3.342 862210 ...554... x tp;*

NAom

—4
X gp]

AClassical
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?

from the vacuum fluctuations

Constant.
\ Classical Input parameter to theory

= 3.342 862210 ... 554... x {p*

A
4 120 digits Aqu
- 3.342862210 ...541... x tp *

A

1 2 O dl glts AClassical
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Cosmological Constant Problem

How do we deal with this 1n the current theory ?

from the vacuum fluctuations

Constant.

Classical Input parameter to theory

10720 GeV~!
(1073¢ m)

Planck scale

weak scale

10*1 GeV~—
(10%° m)

Hubble scale

\?_/

Why is the universe so big ?

3

Py —an w g %LVU
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Vacuum Fluctuations: Higgs Particle
Closely related problem
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mu?) Q
h =--=--4 F==--- h
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mu?) Q
h =--=--4 F==--- h

~A?2 = mH ~ 10?0 GeV
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mwu?)
h ====4 f===-- h
mH? =2.569678321 ... 554... x fp/’ Q
e EE—
60 digits ~A? = mH ~ 10%° GeV
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mu?) Top
mH? = 2.569678321 ... 554... x (p> Q """ h
T IWI ~A? = mH ~ 10%° GeV
-2.569678321 ... 453... x {p°

60 digits

87



Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mwu?)
h ====4 f===-- h
mH? =2.569678321 ... 554... x fp/’ Q
e EE—
+ 60 digits ~A%? = mH ~ 10" GeV

-2.569678321 ... 453... x fp°
P

60 digits

- Estimated mass corrections unreasonably large
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mu?)
mH? =2.569678321 ... 554... x lp? Q """ !
+ 60 digits ~A* = mH ~ 102 GeV
- 2.569678321 ... 453... x Ip”
60 digits “;grg‘;‘i‘(jy T ~ mX
- Estimated mass corrections unreasonably large \ X

- Instability of the Higgs mass O
S (N R h
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Top
Vacuum fluctuations of Higgs mass (mu?) /7~ \

: h
i
eV
!
i?i

X
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Top
Vacuum fluctuations of Higgs mass (mu?) 7\
Without “small scale” physics g h
(only gravity + pencil DoF) |
- Bizarre, but stable 3 LV
- Suggests fine tuning i J
i
X
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Top
Vacuum fluctuations of Higgs mass (mu?) TN
Without “small scale” physics g Including physics at smaller scales |/
(only gravity + pencil DoF) | (vibrations/ air molecules / atoms)
- Bizarre, but stable 5 - Quickly lead to instability
. i . . >V
- Suggests fine tuning g - Suggests active mechanism
; (eg: glue / string)
X
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Top
Vacuum fluctuations of Higgs mass (mu?) TN
Without “small scale” physics 5 Including physics at smaller scales |/
(only gravity + pencil DoF) I (vibrations/ air molecules / atoms)
- Bizarre, but stable ! - Quickly lead to instability v
- Suggests fine tuning i - Suggests active mechanism ’
3 (eg: glue / string)
Higgs mass in SM Higgs mass including new,
| high mass scale physics X
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mu?)
mH? =2.569678321 ... 554... x lp? Q """ !
+ 60 digits ~A* = mH ~ 102 GeV
- 2.569678321 ... 453... x Ip”
60 digits “;grg‘;‘i‘(jy T ~ mX
- Estimated mass corrections unreasonably large \ X

- Instability of the Higgs mass O
S (N R h
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Vacuum Fluctuations: Higgs Particle
Closely related problem

Vacuum fluctuations of Higgs mass (mmn?) -
mH? =2.569678321 ... 554... x lp? Q """ !
+ 60 digits ~A> = mH ~ 102 GeV
- 2.569678321 ... 453... x {p°
60 digits n;grg‘;ijy X
- Estimated mass corrections unreasonably large \ X

- Instability of the Higgs mass
h ==-=--4  f===-- h
Particular to Spin-0 particles
- Spin 1/2 Protected by charge conservation.
Need interactions with v to get their mass

- Spin 1, 3/2, 2: need needed the extra particles w/Q2-from
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A XA XX X6 Xy x
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A X% XX XK XX Xy X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A XA XK XK XX Xy X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)

Measured scale off ~ 1072 GeV=!1 ~ 107" m
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A XA XX X XX Xy X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)

Measured scale off ~ 1072 GeV=!1 ~ 107" m

A ~ £rn would be bad for atoms/planets/people... all blackholes
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A XA XX X XX Xy X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)

Measured scale off ~ 1072 GeV=!1 ~ 107" m

A ~ £rn would be bad for atoms/planets/people... all blackholes
Fa N (€P12A2)

FeMm
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A XA XX X XX Xy X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)

Measured scale off ~ 1072 GeV=!1 ~ 107" m
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A TA XX X XX Xy X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)

Measured scale off ~ 1072 GeV=!1 ~ 107" m

A ~ £rn would be bad for atoms/planets/people... all blackholes
Fa N (€P12A2)

FeMm

Expect: ~ 1

Observe: ~ 1034
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Vacuum Fluctuations: Higgs Field

Another way of talking about same problem
Can perform similar estimate for scale of interaction with condensate v
Same logic = Scale should be set by the cut-off in the theory

A TA X OXH XX X X

[« Naively, A ~ Cpi :
A ~ 2~ 10720 GeVTl ~ 10730 m

fp)

Measured scale off ~ 1072 GeV=!1 ~ 107" m

hlackholes

A ~ Lr would be bad for atoms/planets/ Why is o
sTavizy g,
Weaf >

TG~ (0p P A?)

FeMm

Expect: ~ 1

Observe: ~ 1034

10:.



Vacuum Fluctuations: Higgs Field

Another wav of talkino abhout same nrohlem

Weakness of gravity directly responsible ™ \ZitthOHdensate v
~ all structure around us 1 the theory

P

/ XA X
RPlanet ~ % X Tatom
.' a . E )
1
o )4
RAnimal ~ (@) X T'atom . 36
eV ~107°° m

(Stars ... )

eVl ~ 10719 m

A ~ Lr would be bad for atoms/planets/] j,,-——=Lhlackholes
Expect: ~T 8"V 50
Po s (lpPA?) P gt

Feu Observe: ~ 10734
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Vacuum Fluctuations: Higgs Field

Another wav of talkino abhout same nrohlem

P

Weakness of gravity directly responsible
~ all structure around us

in with condensate v
n the theory

/ > x
~U & : 7? /
RPlanet aG X Tatom
R
/ \ l

10-20 GeV—! 1073 GeV ! 10* Gev~!

(107%° m) (10719 m) (10%° m)

| I
Planck scale weak scale Hubble scale

\/ “Hierarchy Problem”

6)

Why is gravity so weak ?

USCIT VO, 7
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Length Scales

Quantum Mechanics + Space-time leads us to expect:

_ Planck scale ~ weak scale ~ Hubble scale
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Length Scales

Quantum Mechanics + Space-time leads us to expect:

_ Planck scale ~ weak scale ~ Hubble scale

Ve

We observe:

Planck scale weak scale

Hubble scale
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Length Scales

Quantum Mechanics + Space-time leads us to expect:

_ Planck scale ~ weak scale ~ Hubble scale

<
We observe:
1017 1044
G > | € >
Planck scale weak scale Hubble scale

Current theory accounts for huge difference w/implausible cancellation
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Length Scales

Quantum Mechanics + Space-time leads us to expect:

_ Planck scale ~ weak scale ~ Hubble scale

<
We observe:
1017 1044
G > | € >
Planck scale weak scale Hubble scale

Current theory accounts for huge difference w/implausible cancellation
Need modifications QM or Space-time to avoid fine tuning
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What scale do we need Moditfication?
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Can avoid need for fine tuning only if A ~ weak-scale.

Need changes to stop vacuum
fluctuations below: 1073 GeV~!
(10~ m)
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What scale do we need Moditfication?

2
~ WwWe ak_ SC ale mHClassical ~ A

Can avoid need for fine tuning only if A ~ weak-scale.

new particle mX ~ 1000 GeV
Need changes to stop vacuum

\ X
fluctuations below: 1073 GeV~!
(10~ m) fomemed 0 heaaa 7
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Dark Matter

-
. H
2 =D - s
-

" R (x 1000 ly)



Dark Matter

Most natural explanation requires
new physics at 1072 GeV~!
(10~ m)

.. R (x 1000 1y)




