How and Why to go Beyond the Discovery of the Higgs Boson

John Alison

University of Chicago
http://hep.uchicago.edu/~johnda/ComptonLectures.html

Last Lecture

Newton's Dream: Direction of science

Turn of 20th Century: Dream in peril

20th Century Revolutions:

- Relativity
- Quantum Mechanics

Last Lecture

Newton's Dream: Direction of science

Turn of 20th Century: Dream in peril

20th Century Revolutions:

- Relativity
- Quantum Mechanics (start here today)

Quantum Mechanics

Quantum Mechanics

Picture of atom (circa 1911)

Electrons

- Negative charge
- \sim all the space

Nucleus

- Positive charge
- ~all the mass

Quantum Mechanics

Picture of atom (circa 1911)

Electrons

- Negative charge
- \sim all the space

Nucleus
 - Positive charge
 - ~all the mass

Problems:

- Known physics predicts electrons should spiral in to nucleus.

Why is matter stable?

- Atoms absorb/emit energy (light) only at discrete values. Why not continuous, as predicted?
- Wave-Particle duality: matter vs light Really two modes existence? Which is fundamental?

Quantum Mechanics

Picture of atom (circa 1911)

Quantum Mechanics

Picture of atom (circa 1911)

Electrons

- Negative charge
- \sim all the space

Nucleus

- Positive charge
- ~all the mass

Long Period of Confusion:

- Several ad-hoc competing ideas able to give partial answers
- Eventually unified to consistent theory
- Solution not modification of electric force or structure of atom
- Completely new framework for all physical processes

Quantum Mechanics

Picture of atom (circa 1911)

Nucleus

Upshot:

Shouldn't talk about electron trajectories within an atom
Instead new mathematical concept "Amplitude" (ψ)

- ψ is the fundamental physics entity
- Describes everything there is to know about the electron

Quantum Mechanics gives prescription for how:

- Amplitudes evolve in time (behave like waves)
- To convert amplitudes to probabilities $\left(|\psi|^{2}=\right.$ Prob)

Probabilities

Randomness in nature
$\psi \mu$
Exact same ψ_{μ}

μ

Probabilities

Randomness in nature

Probabilities

Randomness in nature

- QM cannot predict what will happen in any particular event (μ decay)
- QM can predict distributions (what happens on average)

Huge loss in predictivity!

Uncertainty Principle

Position well-defined when
probability (ψ^{2}) sharply peaked on one place

Uncertainty Principle

Position well-defined when probability $\left(\psi^{2}\right)$ sharply peaked on one place

Momentum well-defined when uniform distance between peaks

Uncertainty Principle

Position well-defined when probability (ψ^{2}) sharply peaked on one place

Uncertainty Principle

Position well-defined when probability $\left(\psi^{2}\right)$ sharply peaked on one place

Momentum well-defined when uniform distance between peaks

Reasonably well-defined position and Reasonably well defined momentum

Stability of Matter

Atom:

Stability of Matter

Classically (w/o QM)

Atom:

Electron will sit directly on nucleus

Stability of Matter

Classically (w/o QM)

Atom:

Quantum World

Electron will sit directly on nucleus
Atoms are stable w/finite size

Minimum Energy

Minimum Energy

Minimum Energy

Classically (w/o QM)

Lowest possible energy is 0 . Not moving and at lowest point.

Minimum Energy

Lowest possible energy is 0 . Not moving and at lowest point.

Quantum World

Cannot be both at lowest point and not moving.
Minimum non-zero energy: $\mathrm{E} \sim \mathrm{h} \omega$

Wave vs Particles

Everything is a quantum particle!
Particles have definite values of:

- mass
- spin: $(0,1 / 2,1, \ldots . \times h)$
- other properties: e.g: charge

Wave vs Particles

Classically

Wave vs Particles

Classically

Quantum World

Wave vs Particles

Wave vs Particles

Classically

Quantum World

Can not follow trajectories of quantum particles
Treated identical particles must be treated as indistinguishable

Wave vs Particles

Everything is a quantum particle!
Particles have definite values of:

- mass
- spin: $(0,1 / 2,1, \ldots . \times h)$
- other properties: e.g: charge

Identical Particles Indistinguishable: Cannot trace trajectories

- Physics depends on $|\psi|^{2}$
$-|\psi(\mathrm{p} 1, \mathrm{p} 2)|^{2}=|\psi(\mathrm{p} 2, \mathrm{p} 1)|^{2}$ or $\psi(\mathrm{p} 1, \mathrm{p} 2)= \pm \psi(\mathrm{p} 2, \mathrm{p} 1)$

Wave vs Particles

Everything is a quantum particle!
Particles have definite values of:

- mass
- spin: $(0,1 / 2,1, \ldots . \times h)$
- other properties: e.g: charge

Identical Particles Indistinguishable: Cannot trace trajectories

- Physics depends on $|\psi|^{2}$
$-|\psi(\mathrm{p} 1, \mathrm{p} 2)|^{2}=|\psi(\mathrm{p} 2, \mathrm{p} 1)|^{2} \quad$ or $\psi(\mathrm{p} 1, \mathrm{p} 2)= \pm \psi(\mathrm{p} 2, \mathrm{p} 1)$
Two fundamental types of particles:
"Fermions" $\psi(\mathrm{p} 1, \mathrm{p} 2)=-\psi(\mathrm{p} 2, \mathrm{p} 1)$
"Bosons" $\psi(\mathrm{p} 1, \mathrm{p} 2)=+\psi(\mathrm{p} 2, \mathrm{p} 1)$

Wave vs Particles

Everything is a quantum particle !
Particles have definite values of:

- mass
- spin: $(0,1 / 2,1, \ldots . \times h)$
- other properties: e.g: charge

Identical Particles Indistinguishable: Cannot trace trajectories

- Physics depends on $|\psi|^{2}$
$-|\psi(\mathrm{p} 1, \mathrm{p} 2)|^{2}=|\psi(\mathrm{p} 2, \mathrm{p} 1)|^{2} \quad$ or $\psi(\mathrm{p} 1, \mathrm{p} 2)= \pm \psi(\mathrm{p} 2, \mathrm{p} 1)$
Two fundamental types of particles:
"Fermions" $\psi(\mathrm{p} 1, \mathrm{p} 2)=-\psi(\mathrm{p} 2, \mathrm{p} 1)$
"Bosons" $\psi(\mathrm{p} 1, \mathrm{p} 2)=+\psi(\mathrm{p} 2, \mathrm{p} 1)$
Big collections of Fermions act like classical particles
Big collections of Bosons act like classical waves

Why don't we not notice these strange effects?

Relativity: c is a big number (~ 0.5 billion mph)

Quantum Mechanics: h is a small number $\sim 5 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Why don't we not notice these strange effects?

Relativity: c is a big number (~ 0.5 billion mph)
If I move at 500 mph for 80 years: Gain ~ 1 millisecond

Quantum Mechanics: h is a small number $\sim 5 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
If my position is known to size of an atom:

$$
\Delta \mathrm{v} \sim 10^{\wedge}-26 \mathrm{mph}(\Delta \mathrm{p} / \mathrm{m})
$$

Revolution \& Newton's Dream

Particular nature of revolution in Physics.

- Previous theories where not rejected.
- Seen as approximation in certain context
- Progress brings greater unification (Loss in predictivity)

Revolution \& Newton's Dream

Particular nature of revolution in Physics.

- Previous theories where not rejected.
- Seen as approximation in certain context
- Progress brings greater unification (Loss in predictivity)

Concepts thought different, faces of same thing: Relativity:

- Space and time
- Energy and Mass (also momentum)
- Electricity and Magnetism
- (Gravity shown to be result of warping of space time)

Quantum Mechanics:

- Waves and Particles
- Chemistry and Physics

Lecture Outline

April 1st: Newton's dream \& 20th Century Revolution
April 8th: Mission Barely Possible: $Q M+S R$
April 15th: The Standard Model
April 22nd: Importance of the Higgs
April 29th: Guest Lecture
May 6th: The Cannon and the Camera
May 13th: The Discovery of the Higgs Boson
May 20th: Experimental Challenges
May 27th: Memorial Day: No Lecture
June 3rd: Going beyond the Higgs: What comes next ?

Lecture Outline

April 1st: Newton's dream \& 20th Century Revolution
April 8th: Mission Barely Possible: QM $+S R$
April 15th: The Standard Model
April 22nd: Importance of the Higgs
April 29th: Guest Lecture
May 6th: The Cannon and
May 13th: The Discovery of
May 20th: Experimental Cl - Steven Weinberg
May 27th: Memorial Day: I
June 3rd: Going beyond th

Sources:

- Nima Arkani-Hamed
- ...

I will keep this list up to date as we go along.

Today's Lecture

Mission Barely Possible:
Combining Relativity and Quantum Mechanics

Reminder:

20th Century Revolutions

Reminder: Relativity

Space-time

Mass increases with speed!

Closely associated to this:

$$
\begin{aligned}
& \mathrm{E}=\mathrm{mc}^{2} \\
& \mathrm{E}^{2}=\mathrm{p}^{2} \mathrm{c}^{2}+\mathrm{m}^{2} \mathrm{c}^{4}
\end{aligned}
$$

Reminder: Quantum Mechanics

New mathematical concept "Amplitude" (ψ)
Prescription for how:

- Amplitudes evolve in time (behave like waves)
- To convert amplitudes to probabilities $\left(|\psi|^{2}=\right.$ Prob)

Determinism gone. Only predict probabilities.

$$
\begin{aligned}
& \Delta \mathrm{x} \Delta \mathrm{p} \geq \mathrm{h} \quad \text { Minimum non-zero energy: } \mathrm{E} \sim \mathrm{~h} \omega \\
& \Delta \mathrm{E} \Delta \mathrm{t} \geq \mathrm{h}
\end{aligned}
$$

Particles: Fermions/Bosons Spin quantized units of $1 / 2 \mathrm{~h}$

Combining Relativity \& QM

First 25 years of the 20th century two revolutions. 85 years since then, were all about putting these together.

Combining Relativity \& QM

First 25 years of the 20th century two revolutions. 85 years since then, were all about putting these together.

Looks to be impossible: Basic languages are different

Combining Relativity \& QM

First 25 years of the 20th century two revolutions. 85 years since then, were all about putting these together.

Looks to be impossible: Basic languages are different
QM: Time special (fundamental) role. Specify ψ at one time. Prescription for how to evolve to later times,

Combining Relativity \& QM

First 25 years of the 20th century two revolutions. 85 years since then, were all about putting these together.

Looks to be impossible: Basic languages are different
QM: Time special (fundamental) role. Specify ψ at one time. Prescription for how to evolve to later times,

Relativity: Time is not special! (can mix space and time by moving)

Combining Relativity \& QM

First 25 years of the 20th century two revolutions. 85 years since then, were all about putting these together.

Looks to be impossible: Basic languages are different
QM: Time special (fundamental) role. Specify ψ at one time. Prescription for how to evolve to later times,

Relativity: Time is not special! (can mix space and time by moving)
Turns out (just barely) possible: Quantum Field Theory

- Basic framework for how the world works.
- Dramatically restricts what a theory can possibly look like

Consequences of Union

Anti-particles must exist

- Shocking / Unexpected
- Doubled everything in universe
- Makes the vacuum interesting

Key role of Spin:

- Relation between spin and particle type
- Dramatically limits types of particles can have

Major constraints on types of interactions allowed

- Only certain interaction will ever be important
- Always be a finite number of parameters that matter

Causality

What happens next can only depend of what happened before (Does not depend on something that hasn't happened yet!)

If someone dies from a gun shot, the gun must be shot first.
Causality basic prerequisite to science!

Causality in Relativity

Cant send signals faster than maximum speed

Causality in Relativity

Cant send signals faster than maximum speed

All moving observers agree that A happens before B Can say safely say: "A causes B"

Causality in Relativity

If you could go faster than c , things go wrong

Causality in Relativity

If you could go faster than c , things go wrong

Depending about how you move, disagree about what comes first. Causality is violated. Bullet hits B before A pulls trigger.

Causality in Relativistic QM

w/QM always some non-zero probability of getting out.

Causality in Relativistic QM

w/QM always some non-zero probability of getting out.
A shoots particle (say proton) to B

Causality in Relativistic QM

w/QM always some non-zero probability of getting out.
A shoots particle (say proton) to B

Causality in Relativistic QM

w/QM always some non-zero probability of getting out.
A shoots particle (say proton) to B

Problem, looks like current is going backwards in time from A to B

Causality in Relativistic QM

w/QM always some non-zero probability of getting out.
A shoots particle (say proton) to B

Problem, looks like current is going backwards in time from A to B Way out, if interpret this as B sending something to A
But B has to send something with opposite charge. (know A lost charge)

Causality in Relativistic QM

w/QM always some non-zero probability of getting out.
A shoots particle (say proton) to B

Problem, looks like current is going backwards in time from A to B Way out, if interpret this as B sending something to A
But B has to send something with opposite charge. (know A lost charge)

Has an Impact on Nothing

What does it take to study empty space ("the vacuum") ? Nothing special...until try to check small regions

Has an Impact on Nothing

What does it take to study empty space ("the vacuum")? Nothing special...until try to check small regions

Before QM:

Build tiny robots. (Get tiny robots to build tinier robots, who ..)

Has an Impact on Nothing

What does it take to study empty space ("the vacuum") ?
Nothing special...until try to check small regions

Before QM:

Build tiny robots. (Get tiny robots to build tinier robots, who ..)

With QM:

At small distances, uncertainty principle kicks in Need large $\Delta \mathrm{p}$ (or equivalently large $\Delta \mathrm{E}$) Smaller and smaller distances, need higher and higher energies

Empty Space Interesting

When eventually get to small enough distances to need $\Delta \mathrm{E} \sim 2 \mathrm{mec}^{2}$
Nothing prevents creation of particle - anti-particle pair

- Everything is conserved (energy/charge/...)
- Some probability for this to happen

Completely changes our picture of the vacuum

- Simple act of looking at the creates something
- No sense in which the vacuum is empty

Often here accelerator as worlds most powerful microscopes
Looking at the vacuum

Other Implications Combining R \& QM

Spin
QM:

Could accommodate spin
Any $1 / 2$ integer value allowed

Interactions

QM
Any conceivable interaction possible

Other Implications Combining R \& QM

Spin

QM:
Could accommodate spin
Any 1/2 integer value allowed
$\mathrm{QM}+\mathrm{R}:$ Forced to talk spin (Something special w/massless particles) Integer spin $=$ Bosons $/$ Half-integer $=$ Fermions
Can only have: $\begin{array}{llllll}0 & 1 / 2 & 1 & 3 / 2 & 2\end{array}$
Interactions
QM: Any conceivable interaction possible

Other Implications Combining R \& QM

Spin

QM:
Could accommodate spin
Any $1 / 2$ integer value allowed
$\mathrm{QM}+\mathrm{R}: \quad$ Forced to talk spin (Something special w/massless particles)
Integer spin $=$ Bosons $/$ Half-integer $=$ Fermions
Can only have: $\begin{array}{llllll}0 & 1 / 2 & 1 & 3 / 2 & 2\end{array}$
Interactions
QM: Any conceivable interaction possible
$\mathrm{QM}+\mathrm{R}$: Charge is conserved
Local (no more action at a distance)
Only finite number of specific interactions allowed :

bosons fermions

Other Implications Combining R \& QM

Spin

QM: Integer spin $=$ Bosons $/$ Half-integer $=$ Fermions
Can only have: $\begin{array}{llllll}0 & 1 / 2 & 1 & 3 / 2 & 2\end{array}$
Interactions
QM: Any conceivable interaction possible
$\mathrm{QM}+\mathrm{R}$: Charge is conserved
Local (no more action at a distance)
Only finite number of specific interactions allowed :

bosons
fermions

