How and Why to go Beyond the Discovery of the Higgs Boson

John Alison

University of Chicago

http://hep.uchicago.edu/~johnda/ComptonLectures.html

Lecture Outline

- April 1st: Newton's dream & 20th Century Revolution
- **April 8th:** Mission Barely Possible: QM + SR
- April 15th: The Standard Model
- **April 22nd: Importance of the Higgs**
- April 29th: Guest Lecture
- May 6th: The Cannon and the Camera
- May 13th: The Discovery of the Higgs Boson
- May 20th: Problems with the Standard Model
- May 27th: Memorial Day: No Lecture
- June 3rd: Going beyond the Higgs: What comes next ?

Reminder: Last Week

Quantum Mechanics + Space-time leads us to expect:

We observe:

Current theory accounts for huge difference w/implausible cancellation *Need modifications QM or Space-time to avoid fine tuning*

Reminder: Last Week

Problems associated to each fundamental scale.

Planck Scale:

What replaces spacetime ? ("Quantum Gravity")

Weak Scale:

Ρ

Why is Gravity so weak? ("Hierarchy Problem")

Hubble Scale:

Why is the universe so big ? ("Cosmological Constant Problem")

e

Current theory accounts for huge difference w/implausible cancellation *Need modifications QM or Space-time to avoid fine tuning*

Today's Lecture

Going beyond the Higgs Discovery: What comes next ?

Focus: Problem associated w/weak scale

Most tractable now:

- Currently directly probing this scale with the LHC
- Understand the physics at this scale incredibly well Working theory thats been verified experimentally

Focus: Problem associated w/weak scale

Un-like situation before Higgs where theory broke down $P(\omega\omega \rightarrow \omega\omega) > 1$ / *Inconsistent mass description*

What scale do we need Modification?

Can avoid need for fine tuning only if $\Lambda \sim$ weak-scale.

new particlemX ~ 1000 GeVNeed changes to stop vacuum
fluctuations below: 10^{-3} GeV^{-1}
 (10^{-19} m) MMhMM

(Pencil metaphor: analogous to the pencil glue/string)

Naturalness Problems in History

Same type of problems have occurred before in history of physics Same types of arguments for scale of new physics worked <u>Example</u>: Energy stored in the electric field around electron

$$\Xi \sim \frac{\alpha}{r} \sim \frac{\alpha}{\Lambda}$$

Naively seems infinite

Energy of electron at rest: ~ me

Introduce cut off

Need $\Lambda \ge \alpha/E$ to avoid fine tuning

Naturalness Problems in History

Same type of problems have occurred before in history of physics Naturalness requires new physics kick in $\Lambda \geq \alpha/me$ Picture of point like electron must break down at this scale

Exactly what happens !

At scale $\Lambda \sim 1/\text{me}$ start seeing particle-anti-particle cloud

Potential Solutions

"Compositeness" Higgs made of smaller particles Weak scale not fundamental / Similar to size of the proton New underlying physics responsible for Higgs/Higgs potential ⇒ New forces / New matter

Extra dimensions

Planck scale is really at the weak scale Gravity appears weak b/c gravitons can propagate in extra dim.

Go through example of how works in detailSupersymmetryHas been a favorite within the fieldVacuum corrections suppressed below weak scale

Super Symmetry

All regular rules of QFT apply / Symmetry relating particles/Super particles

Super Symmetry

- Havent seen super-partners
- Could be another example of long-distance illusion: eg: difference between forces
- Idea: going to short enough distances start seeing symmetry
- To avoid fine-tuning needs to happen around weak scale

How Does This Help?

Super Symmetry at the LHC

Interaction Strengths

Searching For Solutions at the LHC

Higgs as Window to New Physics

Compositeness:

- Deeper origin for shape of potential (probe experimentally with *hh* events) Potential Energy of Higgs Field

Extra Dimensions:

SuperSymmetry:

Enhanced Higgs Production

Reconstructed the event from the observed b-jets

- Work backward from $4b \rightarrow 2h \rightarrow G$
- Study the "reconstructed" graviton mass

Modified Higgs Couplings

Expect contributions from new physics to correct higgs mass:

If new physics interacts with the **electro-magnetic:**

Modifies rate a which higgs bosons decay to photons.

strong force:

Modifies rate a which higgs bosons are produced at LHC

Modified Higgs Couplings

Modified Higgs Couplings

Expect contributions from new physics to correct higgs mass:

Modifies Di-Higgs production

Measuring Higgs Potential

Energy of Higgs field: Higgs potential

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Expanding about minimum: $V(\phi) \rightarrow V(v+h)$

 $\frac{\mu}{\sqrt{\lambda}} \equiv v \sim$ weak scale

$$V = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

= $V_0 + \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2v^2} v h^3 + \frac{1}{4} \frac{m_h^2}{2v^2} h^4$
Higgs mass term
$$\lambda_{hhh} + \frac{\lambda_{hhh}}{m_{-production}} + \frac{\lambda_{hh}}{h_{-production}} + \frac{\lambda_{hhh}}{h_{-production}} + \frac{\lambda_{hhh}}{\lambda_{hhh}} + \frac{m_h^2}{2v^2}$$

- Shape of potential gives relationship between λ_{hhh} and m_h , v
- Measuring λ_{hhh} important probes the shape of the Higgs potential
- *hh* production interesting because it measures λhhh

Standard Model Total Production Cross Section Measurements Status: August 2016

Outlook for the Future What we might know by 2035...

Future: 200 Interactions ATLAS

HL-LHC tt event in ATLAS ITK at <µ>=200

Future LHC Simulation

Sensitivity tested in model with 7 parameters

4 fermion couplings:

 $\kappa_{\tau} / \kappa_{\mu} / \kappa_{u} \equiv \kappa_{t} = \kappa_{c} / \kappa_{d} \equiv \kappa_{b}$

Allow for decays to new particles

Direct search for Super Symmetry

Super-Photon Mass [GeV]

Beyond the LHC What we might know by 2055...

100 TeV proton collider

Measure Higgs self-coupling to $\sim 10\%$

100 TeV proton collider

Have only collected ~1% of total LHC dataset Next 5-10 years incredibly unique/interesting time!

Bigger rings currently being planned

ATLA

LICE

Thank You