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[Lecture Outline

April 1st: Newton’s dream & 20th Century Revolution
April 8th:  Mission Barely Possible: QM + SR

April 15th: The Standard Model

April 22nd: Importance of the Higgs

April 29th: Guest Lecture

May 6th: The Cannon and the Camera

May 13th: The Discovery of the Higgs Boson

May 20th: Problems with the Standard Model

May 27th: Memorial Day: No Lecture

June 3rd:  Going beyond the Higgs: What comes next ?



Reminder: Last Week

Quantum Mechanics + Space-time leads us to expect:

_ Planck scale ~ weak scale ~ Hubble scale

<
We observe:
1017 1044
G > | € >
Planck scale weak scale Hubble scale

Current theory accounts for huge difference w/implausible cancellation
Need modifications QM or Space-time to avoid fine tuning



Reminder: Last Week

=
Problems associated to each fundamental scale.

Planck Scale:

What replaces spacetime ? (““Quantum Gravity”)

V1 Weak Scale:
Why is Gravity so weak ? (“Hierarchy Problem”)

Hubble Scale:

Why is the universe so big ? (“Cosmological Constant Problem™)

P

Current theory accounts for huge difference w/implausible cancellation
Need modifications QM or Space-time to avoid fine tuning



Today’s Lecture

Going beyond the Higgs Discovery:
What comes next ?



Focus: Problem associated w/weak scale

(In principle)

Failure WW scattering —» Standard Model (Before Higgs Discover

~unexplored |1 HC Directly Probed Experimentally
10720 GeV—! 1073 GeV 1 1041 GeV~!
(107%° m) (10719 m) (10°® m)
I I I
Planck scale weak scale observable universe
(vVGn)

Most tractable now:
- Currently directly probing this scale with the LHC
- Understand the physics at this scale incredibly well
Working theory thats been verified experimentally




Focus: Problem associated w/weak scale

(In nrincinle)

| Reminder: Vacuum tluctuations of Higgs mass (mu?)

Top

Very different type problem than we discussed before:
“Naturalness” Problem:

- Theory 1s fully logically consistent

- Need bizarre (un-natural) choice of input parameters

SC

Un-like situation before Higgs where theory broke down
P(wo—ww) > 1 /Inconsistent mass description




What scale do we need Moditfication?

~ (Weak-scale)2 mHzClassical ~ A2

Can avoid need for fine tuning only if A ~ weak-scale.

new particle mX ~ 1000 GeV
Need changes to stop vacuum \ X

fluctuations below: 1073 GeV~!
(10~1° m) S N R h

(Pencil metaphor: analogous to the pencil glue/string)



Naturalness Problems 1n History

Same type of problems have occurred before in history of physics
Same types of arguments for scale of new physics worked
Example: Energy stored in the electric field around electron
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Naively seems infinite

electric field
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Energy of electron at rest: ~ me

Introduce cut off

Need A > o/E to avoid fine tuning



Naturalness Problems 1n History

Same type of problems have occurred before in history of physics

(@l 4 4 c 1 c 1 1

Naturalness requires new physics kick in A > o/me
Picture of point like electron must break down at this scale

o
m Q ﬂ Exactly what happens !
e At scale A~1/me start seeing
| S o —
Solution was Anti-particles :

- Direct result of extension of Space-time (adding QM)
- Doubled the number of particles in the theory

particle-anti-particle cloud
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Potential Solutions

vacuum — e 1 O 17
fluctuations Cmmmmmmm————- >
Planck scale ~ weak scale Planck scale weak scale

“Compositeness” Higgs made of smaller particles
Weak scale not fundamental / Similar to size of the proton
New underlying physics responsible for Higgs/Higgs potential
= New forces / New matter

Extra dimensions
Planck scale 1s really at the weak scale
Gravity appears weak b/c gravitons can propagate in extra dim.

Go through example of how works in detail
Supersymmetry Has been a favorite within the field
cctions suppressed below weak scale
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Super Symmetry

Modification of Space-time

Extra Quantum

Di ' “super” clectron
/ 1mension electron
Distance measured in t A
“quantum” numbers: o
XXy==yXX
= x>=0
Can only take one step < N 0
Our familiar 4D Space-time
Doubles number of particles: \ :
_ Standard Model partizzles Measured 1in normal numbers
- Super-partners w/step in extra dimension X*y=y>X

All regular rules of QFT apply / Symmetry relating particles/Super particles
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Super Symmetry

Modification of Space-time

Extra Quantum

. ’
/ Dimension 2;16 Iz: etfon electron
Distance measured in t A
“quantum” numbers: o
X Xy==-yXX
= x*=0
(an onlv take one sten < >

- Havent seen super-partners

- Could be another example of long-distance 1llusion:
eg: difference between forces

- Idea: going to short enough distances start seeing symmetry

- To avoid fine-tuning needs to happen around weak scale

Wu o _ T r \’IJIJ.LJ Foro ) Trrrer
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~(weak-scale)?

How Does This Help ?

~(weak-scale)?
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Super Symmetry at the LHC

Super-top

Quantum Dimension X
proton ——>_." €<—— proton

“—

L4

|
Super-top

t
D “Super-photon™
[ 2 - Massive
t

A

- Stable
- Weakly interacting

‘Perfect candidate for Dark Matter
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Interaction Strengths

C

q
o= 1/137 e OlWeak = 1/50 OlStrong = 1/10
Z q gluon
A 1
4 «
604 ~ Standard Model 60 ~ Minimal
\\ supersymmetric
50~ AN extension of
40- T \_  Standard Model
« .
30~ L oemmeees S o~
Did not have to happen! /
- Not put in by hand
- Could be coincidence » T "
- Seems like strong sign we are the right track . 10 :;?1,_.,9)._ GeV
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Searching For Solutions at the LHC



Higgs as Window to New Physics

Potential Energy
of Higgs Field

Compositeness:

- Deeper origin for shape of potential
(probe experimentally with 4/ events)

Extra Dimensions: SuperSymmetry:

Excited Graviton R
N\ ‘ e he---.
’ h h
% ™~ new particle(s)



Enhanced Higgs Production

Signal: Event Selection:

.
'4
‘f
-

b S %
s T -
Graviton (mG) _.*° s, ;

~§
~§
~

Reconstructed the event from the observed b-jets
- Work backward from 4b — 2h — G
- Study the “reconstructed” graviton mass
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Modified Higgs Couplings

Expect contributions from new physics to correct higgs mass:

new physics

If new physics interacts with the

electro-magnetic: strong force:
) g
h ===- h ----
7 g
Modifies rate a which higgs bosons Modifies rate a which higgs bosons

decay to photons. are produced at LHC
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Modified Higgs Couplings

Exy Why detailed Higgs measurements are so important:

' ATLAS and CMS [C]ATLAS+CMS
| LHC Run 1 I:IATLAS
I [ Jcwms

|9 2]

If nq
el
- —68% CL 95% CL + Bestfit x SM expected -
PR [T T T TN N S T ST AN NN SO SO SN NN SR SO S N
0.6 0.8 1 1.2 1.4 1.6
K
Y
Md| y
a .
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Modified Higgs Couplings

Expect contributions from new physics to correct higgs mass:

by construction, cannot avoid:

Higgs interaction:

One of the reasons

h ===~ Di-Higgs is a so important

Modifies Di-Higgs production
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Measuring Higgs Potential

Energy of Higgs field: Higgs potential
V() = —p*¢” + Ag"

Expanding about minimum: Vv (¢) — V(v + h) - = v ~weak scale

V = Vo + M?h? + doh® + 24

2
= Vo + gmyh* + 22vh34. 15k ht

4 202
e Mt V.
Higgs mass term Standard Model:
- - 2
: , "
hh-production hhh-production Ahhh = 5.5

- Shape of potential gives relationship between Awwi and ma, v
- Measuring Awni important probes the shape of the Higgs potential

- hh production interesting because 1t measures Ahhh
24



Standard Model Total Production Cross Section Measurements status: August 2016
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Need much more data than we currently have to see hh
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Outlook for the Future
What we might know by 2035...
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Future LHC Program

Now

2015 l 2020 2026 2030 —

Run I

-8 TeV
- 20/1b

- Get to 300/tb of 13-14 TeV data - 3000/fb of 13-14 TeV data

- Up to 75 interactions per crossing - Pile-up of up to 150-200

X 15 increase 1n size of dataset x150 increase in dataset size
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Future: 200 Interaction

ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <u>=200

Future LHC Simulation

N | v
WR 787




Higgs at the LHC

Uncertainty(%)
on u (Br)

60

| [
Runl: ~30/fb / 7-8TeV

Run II-II: ~300/fb / 13-14 TeV
RunIV: ~3000/fb/13-14 TeV| E=

50

40

30

Br(InV) YY WW Y4 TT bb uu ZY



Benchmark Coupling Constraints

Sensitivity tested in model with 7 parameters

w
9 KQ Ky\ ! g
?KH H—( H%— Kz H%/ Kw
g 5 7 W

4 fermion couplings:
Ke /Kp/ Ku=EKi=Ke/ Kd= Kb

Allow for decays to new particles

31



Uncertainty(%)

20
18
16
14
12

Higgs at the LHC

- Run II-III: ~3(
Run 1V:

Coupling modifications in “Generic” BSM models

(M ~ 1 TeV / Satisfies EWK precision fits)

~3(}

Ky K Ky

Singlet Mixing ~ 6% ~ 6% ~ 6%
2HDM ~ 1% ~ 10% ~ 1%
Decoupling MSSM | ~ —0.0013% ~ 1.6% < 1.5%
Composite ~ —3% ~—B8-9% | ~—-9%
Top Partner ~ —2% ~ —2% ~ —3%

10¢

For 10% deviation

£ | —

o N A~ O

Br(Inv) Ky Kg
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Direct search for Super Symmetry
Super-Photon Mass [GeV]
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Beyond the LHC
What we might know by 2055...
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Schematic of an

80 - 100 km
long tunnel
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~100 km tunnel / Operate 1n two modes
Ist-stage: collide electrons: ee—Zh
2nd-stage: 100 TeV proton collider
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38 Would Also operate in two modes
Ist-stage: collide electrons: ee—Zh
2nd-stage: 50 TeV proton collider

Could be faster time scale if approved




Uncertainty(%)
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Beyond the LHC

Coupling modifications in “Generic” BSM models

(M ~ 1 TeV / Satisfies EWK precision fits)

Run 114 Ky Kb Ky
Run IV Singlet Mixing ~ 6% ~ 6% ~ 6%
“Higad 9HDM ~ 1% ~ 10% ~ 1%
Decoupling MSSM | ~ —0.0013% ~ 1.6% < 1.5%

Composite ~ —3% ~—383=-9% | ~—-9%

Top Partner ~ —2% ~ —2% ~ —3%

For 10% deviation

Br(lnv)

37




100 TeV proton collider

Measure Higgs self-coupling to ~10%

=N

/
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100 TeV proton collider
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