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SOFT AND HARD SEQUENCE DETECTION
IN ISI MEMORY CHANNELS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a contimation-in-part of U.S. patent
application Ser. No. 09/055,003, filed Apr. 3, 1998, which
claims priority to Provisional Ser. No. 60/046,006, filed May
9, 1997, under 35 U.S.C, Section 115(e).

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was supporied in part by the National
Science Foundation under Grant No. ECD-8907068. The
Uniled States Government has certain rights in this inven-
tion.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed generally 1o secuence
detectors, and, more particnlacly, to sequence detectors In
[SI memory channels.

2. Description of the Backpround

In recent years, there bas been a major shift in the design
of signal detectors in magnetic recording. Traditional peak
detectors (PD), such as those described in Nakagawa et al.,
“A Study of Detection Methods of NRZ Recording”, IBEE
Trans, Maga., vol. 16, pp. 1041-110, January 1980, have
been replaced by Viterbi-like detectors in the form of partial
response maximum likelihood (PRML) schemes or hybrids
between freeftrellis detectors and decision feedback equal-
izers (DFE), such as FDTS/DF, MDFE and RAM-RSE.
These melbods were derived under the assumption that
additive white Gausian noise (AWGN) is present in the
system, The resulling trellisfiree branch metries are then
computed as Euclidian distances.

It has long been observed that the noise in magnetic
recording systems is neitber white nor stationary. The non-
stationarity of the media noise results from its signal depen-
dent nature, Combating media noise and ils signal depen-
dence has thus far been confined to modifying the Euclidian
branch metric .to account for these effects, Zeng, el al.,
“Modified Viterbi Algorithm for Jitter-Dominated 1-D7
Channel,” IEEE Trans. Magn., Vol. MAG-28, pp. 2895-97,
September, 1992, and Lee et al,, “Performance Analysis of
the Modified maximum Likelihood Sequence Detector in the
Presence of Data-Dependent Noise,” Proceedings 261h Asi-
lomar Conference, pp. 96164, QOctober 1992 have derived
a branch metric computation method for combating the
signal-dependent character of media noise. These references
ignore the correlation between noise samples. The effective-
ness of this method has been demanstrated on real data in
Zayad et al., “Comparison of Eqealization and Detection for
Very High-Density Magnetic Recording,” IEEE INTER-
MAG Conference, New Orleans, April 1997,

These methods do not take into consideration the corre-
lation between noise samples in the readback signal. These
correlations arise due to noise coloring by front-end
cqualizers, media noise, media nonlinearities, and magne-
{oresistive (MR) bead nonlinearities. This noise coloring
causes significant performance degradation at kigh record-
ing densities. Thus, there is a need for an adaptive
correlation-sensitive maximum likelihood sequence detector
which derives the maximum likelihood sequence detector
{MLSD) without making the usual simplifying assumption
that the noise samples are independent random variables,
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Turbe codes were introduced in 1993 and hold the prom-
ise of substantfal coding gains over current coding
algorithms, and their performance is within a fraction of a
dB of the Shaencn theoretical limit for additive white
Gaussian noise channels. The basic idea in turbo decoding
and other iterative decoding strategies is 1o pass “soft”
information between several components of the decoder and
the detecior. In this context, the detector is the first device
that processes data which is observed 21 the output of the
communications channel. Classically, the detector is a bard-
dejection device which provides zerces and ones at its
output. A Viterbi detector is a typical example of such a hard
detector. When iterative decoding is used, however, the
detector is often 2 soft detector in which the ontputs of the
detector are reliability measures for bits transmitted through
(he communications chanpel. Because the detector is the
first device that processes the channel outpul, the detecior
should be tuoed lo the channel signal and noise statistics.
However, existing soft output deteclors are designed only
for channels which are assumed to have white noise. Thus,
there is a meed for a soft detector which is designed for
channels which have corelated andfor signal-dependent
noise,

SUMMARY OF THE INVENTION

The present invention is directed io a method of deter-
miniog branch metric values in a detector. The method
includes receiving a plurality of time variani signal samples,
the signal samples having one of signal-dependent noise,
correlated noise, and both signal dependent and correlated
noise associated therewith, The method also mncludes select-
ing a branch metric function at a certain time index and
applying the selected function to the signal samples to
determine the metric values. !

The present invention represents a substantial advance
over prior sequence deiectors. Because the present invention
takes into account the correlation between noise samples in
the readback signal, the detected data sequence is detected
with a higher degree of accuracy. Those advantages and
benefits of the present invention, and others, will become
apparent from the Detailed Description of the Invention
hereinbelow,

BRIEF DESCRIPTION OF THE DRAWINGS

For the present invention 10 be clearly understood and
readily practiced, the present invention will be described in
conjunction with the following figures wherein:

FIG. 115 an illustration of a magnetic recording system;

FIG. 2 is an illustration of a CS-MLSD detector circuit of
2 preferred embaodiment of the preseat invention;

FIG. 3 is an illustration of a sample signal waveform, its
samples, and wrillen symbols;

FIG. 3A is an illustration of a branch metric computation

3 module;

FIG. 3B is an illustration of an implementation of a
portion of the branch metric computation module of FIG.
3A;

FIG. 4 is an illustration of one cell of a PR4 trellis;

FIG. 5 is an illustration of 2 detected path in a PR4 rellis;

FIG. 6 is a block diapram of a preferred embodiment of
a method for signal detection;

FIG. 7 is an illustration of PR4 detection results af a
4.4afsymbol;

FIG. B is an illustration of EPR4 detection results at a
4. 4afsymbol;
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FIG. 9 is an illustration of PR4 detection resulis at a
3.5afsymbol;

FIG. 10 is an illustration of EPR4 detection resulls ai a
3.5afsymbol;

FIG. 11 is an illustration of S(AWG)NR margins needed
for error rate of 10~° with EPR4 detectors;

FIG. 12 is an illustration of PR4 detection results at a
2.9a/svmbol; and

FIG. 13 s an illustration of EPR 4 detection results at a
2.9a/symbol.

FIG. 14 is an illustration of a portion of a communications
system having a detector with parallely concatenated decod-
ers; and .

FIG. 15 is an illustration of a portion of a communications

system having a detector serially concatenated with a-

decoder.

DETAILED DESCRIFTION OF THE
INVENTION

FIG. 1 illustrates a magnetic recording system 10, A data
source 12 supplies data to a write signal processing circuit
14. The signal processing cireuit 14 converls the input data
into sigmals with a format suitable for storage on a magnetic
medium 16. The medium 16 is typically a rotating disk, a
“Hoppy" disk, or a tape with magnetic coatings. A write head
18 stores the sigpals on the medium 16 as a series of
variations in the magnetic flux of the medium 16. The wrile
head 18 is controlled by a write control cireuit 20, which
supplies signals to the write head 18 to control its position
with respect to the medium 16.

A read head 22 retrieves the variations in the magnetic
fiux that are stored on the medivm 16. A read control circuit
24 supplies signals to the read head 22 to control its position
with respect to the medium 16. The read head 22 provides
2 stream of data 10 a detector circuit 26. The detector cireuit
26 detects the data from the data siream and outputs the data.
The detector 26 must be able to detect the data in the
presence of intersymbol interference (“ISI™) noise. Prior art
detector circuils have employed the maximum likelihood
sequence (“MLS") estimalion algorithm or peak delection
techniques. The MLS algorithm analyzes a sequence of
consecutive data and determines the output data based on the
sequence. Peak detection techniques identify analog peaks
in & sequence of data apd determiae the output data based on
the peaks.

A block dizgram of a CS-MLSD detector circuit 28 is
shown in FIG. 2. The CS-MLSD detector circuit 28 is a part
of the detector circuit 26 of FIG, 1. The detecior circuit 28
has a feedback circuit 32 which feeds back into a Viterbi-like
detector 30. The outputs of the detecior 30 are decisions and
delayed signal samples, which are used by the feedback
circuit 32. A noise statistics tracker circuit 34 uses the
delayed samples and detector decisions to update the noise
statistics, ie., to update the noise covariance matrices. A
metric computetion update circuit 36 uses the updated
statistics to caleulate the branch metrics needed in the
Vilerbi-like algorithm. The algorithm does nol require
replacing current detectors. It simply adds two new blocks
in the feedback loop to adaptively estimate the branch
melrics used in the Viterbi-like detector 30.

The Viterbi-like detector 30 typically has a delay associ-
ated with it. Until the detector circuit 28 is initialized, signals
of known values may be input and delayed signals are not
output until the detector circnit 28 is initialized. In other
types of detectors, the detector may be initialized by having

- the necessary vaiues set.
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The correlation-sensitive maximum iikelihood sequence
deteetor (CS-MILSD) 28 is described hereinbelow. Assume
{hal N>1 channel bits (symbols), a,, aa, .« « . , ay, aI& Writien
on a magnetic medium. The symbols a,, i=1, ..., N, are
drawn from an alphabet of four symbols, a,, e{+, &, -, ©}.
The symbols ‘4’ and ‘-’ denote a positive and a negative
transition, respectively. The symbol ‘@’ denotes a wriiten
zero (no (ransition) whose nearest preceding non-zero sym-
bol is a *+*, while ‘G’ denotes a written zero whose nearest
preceding transition is a negative oue, Le., *-’. This notation
is used because a simple treatment of transitions as ‘1’s and
no transitions as ‘0’s is blind to signal asymmetries (MR
head asymmetries and base line drifts), which is inappro-
priate for the preseat problem. In FIG. 3 a sample waveform
is illustrated. The signal asymmetries and base line shifts are
exaggerated in FIG. 3. FIG. 3 also shows the written
symbols a4, . . ., 8,4, as well as the samples 1y, . .. , 1,5 of
the read-back waveform, sampled at the rate of one sample
per symbol interval,

When the written sequence of symbols a,, i=1, ..., N, is
1ead, the readback waveform is passed through a pulse-
shaping equalizer and sampled one sample per symbol,
resulting in the sequence of samples r;, i=1, ..., N. Due 10
the noise in the system, the samples r; are realizations of
random variables. The maximum likelihood detectar deter-
mines the sequence of symbols a; that has been written, by
maximizing the likelihood function, ie.:

LI Y Br&[mﬂlf(fl- ] TR )] § M
3

In (1), the likelihood function F(t; . . . , tylags - - » 5 an) is the
joint probability density function (pdf) of the signal samples
Ty« « « 5 Iy, conditioned on the written symbols a,, . . ., 2.
The maximization in {1) is done over 21l possible combina-
tions of symbols in the sequence {a,, . - . , ay}.

Due to the signal dependent nature of media noise in
magnetic recording, the functional form of joint conditional
Paf f{Ty; . - 2 Tylags . ., 34 i0 (1) is different for different
symbol sequences a,, . . . , 3y Rather than making this
distinction with more complex but cluttered notation, the
notation is kept to a2 minimum by using simply the same
symbol ¥ to denote these different functions.

By Bayes rule, the joint conditional pdf (likelihood
function) is factored into a product of conditional pdfs:

L] @
.- rwlar, . -ﬂN)'-'H Jrlriats oo o e BLo oy BXD.

il

To proceed and obtain more concrele results, the nature of
the noise and of the intersymbol interference in magnetic
recording is exploited. -

Finite comelation length, The conditional pdfs in Equation
(2) ace assumed to be independent of fumire samples after
some length L20. L is the correlation length of the noise.
This independence leads to:

e L O e [ TN

reeer iy )
Finite intersymbol interference. The conditional pdf is
assumed to be independent of symbols that are not in the
K-peighborhood of r, . . . , ri,,. The value of K21 is
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determined by the length of the intersymbol interference
(ISI). For example, for PR4, K=2, while for EPR4, K=3.
K20 is defined as the lengih of the leading (anticausal) ISL
and K,=0 is defined zs the length of the trailing (causal) ISJ,
such that K=K +K+1. With this notation the conditional pdf
in (3) can be wrilten as:

Tl oo o0 Pt Bue vos @D e~ s T 07K i
Ky W

Substituting (4) into (2) and applying Bayes rule, the
faclored form of the likelihood function (conditional pdf) is
obtained:

5

10

N (8]
TR O - M ] l—I SUrilnags ons oy Bty e an) = 15
- il
SO0 ety oo FatlBiegye oo o Gietaky)
S R Y T
20

The factored form of equation (5) is suitable for applying
Viterbi-like dynamic programming detection lcehniques.
Equation (5) assumes anticausal factorization, ie. , it is
derived by taking into account the effect of the samples
Tjegs  » + s Fuzy O E, IE Only the causal effects are taken info
account, the cassal equivalent of (5) can be derived as

f(r:l: e ryla;_, e aN)-

N
S0 Dels vor « Fntl|@imkpy one s Blrrary)
Fls e o Fiet 1101y oo s OLiLeky)

F

The cansal and apticausal factorization could be combined
to find the geometric mean of the two to form a causal-
anticausal factorization. Since this only complicates deriva- |
tons and does not provide further insight, only the anti-
causal Equation (5) is considered,

Maximizing the likelibood function in {5) is equivalent 1o
minimizing its negative logarithm. Thus, the maximum-
likelihood detector is now:

25

35

@ 2] = arg] cinlog JUrrts oo o T0LlBieky woe  Ohatai,)
o v 2 EW R SR (TR T SRR
=]
n
. ]—[ SUie1s oo o PietlBiokys oo 2 Oinlnry)
= min J:3
e} P TV s - S
i
N
=arg H,""“]._I Ml Firly von s Pl Gikye von + Bintaky)
i
55

M; represents the branch metric of the trellis/tree iu the
Viterbi-like algorithm. The mefric is a [unction of the
observed samples 1, Ty, . - . 5 I, < It is also dependent on
the postulated sequence of written symbols Ygp e s
85,2 4 Wiich ensures the signal-dependence of the delector.
As a consequence, the branch metrics for every branch in the
ireeftrellis is based on its corresponding signalfmoise statis-
tics. Although the above discussion focused on maximum
likelihood sequence detectors, the discussion also applies to
maximum a-posteriori (MAP) branch metrics by including
prior probabilities. See J. Mourz and A. Kavcic, “The Vilerbi
Algorithm and Markov Noise Memory”, accepted for pub-

4l

&5

6

lication in IEEE Transactions an Information Theory, An
example of MAP soft decision detection is give hereinbelow
in comnection with FIGS. 14 and 15.

Specific expressicns for the branch metrics that resull
voder different assumptions on the noise statistics are next
considered.

Euclidian branch metric. In the simplest case, the noise
samples are realizations of independent identically distrib-
ufed Gaussian random variables with zero meap and vari-
ance o This is a white Gaussian noise assumption. This
implies that the correlation distance is L=0 and that the noise
pdfs have the same form for all noise samples. The total ISI
length is assumed to be K=K +K +1, where K, and K, are the
leading and trailing ISI lengths, respectively. The condi-
tional signal pdfs are factored as

SOt e FutlBiokps oo s Biareky) BT, [(r. —m.-)z] 0]
= VInoT expl| A i)
Frs rate voe s FiatlOi-Kps ee o Blnteg,) R

Here the mean signal mi is dependent on the written
sequence of symbols. For example, for a PR4 channel, m;
€{-1,0,1}. The branch/iree metric is then the conventional
Enclidian distance metsic:

M o) ®
Variance dependent branch metric. It is again assumed that
the acise samples are samples of independent Gaussian
variables, but that their variance depends on the writlen
sequence of symbols. The noise correlation length is still
L=0 but the varance of the noise samples is no longer
constant for all samples. The variance is %%, where the index
i denotes the dependence on the wrilten symbol sequence.
As for the Buclidian metrie, it is assumed that the total IS1
length is K=K +K 41. The conditional signal pdf is factored
to give:

©)

Jers oo Ttl@iogge <o+ G zer,)
FO0 Bty oo s FistlOicgpe e o Biatar,

_ = [n-mp] O
J-“""T“*’[Tz]

The corresponding branch metric is:

(i~ m,-)2 (10

of

2
M, =logo?+ % =logo? +
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Correlation-sensilive branch metric. In the most general
case, the correlation length is L>0. The leading and trailing
ISI lengths are K, and K,, respectively. The noise is now
considered [o be both correlated and signal-dependent. Joint
Gaussian noise pdfs are assumed. This assumption is well
justified in magnetic reconding because the experimental
evidence shows that the dominant media noise modes have
Gaussian-like histograms. The conditional pdfs do not factor
out in this general case, so the general form for the pdf is:

St wee o FrtlBicks oo s Biatar,) an
SOt Firts oo s Fintl@icgys ooy Birkaiy)

’ Rrder C; explNT N,
{n)Y-dete;  expluler'a;]

The (L+1)x(E+1) matric C; i5 the covariance matrix of the
data samples ¢, %, . . - » Iz, When a sequence of symbols
B gt v+ 2 &y ore IS Wrilten, The matrix ¢, in the denominator
of (11) is the LxL lower principal submatrix of C;=[ "¢, ] The
(LA+1)-dimensional vector N; is the vector of differences
between the observed samples and their expecied values
when the sequence of symbols a, gy . . ., 8,52, I5 Wrilten,
LE.:S

Nellrrm) (i) - <2 (ra-m )17 (12)
The vector 1; collects the last L elements of N,
Bi=[{r;~my,y) - - . (Gur=mg,)I. With this notation, the
general correlation-sensitive metric is:

det C;

(13
;= lI:gdct )

+ NP H, e,

- In the derivations of the branch metries (8), (10) and (13),

no assumptions were made on the exact Viterbi-type
architccture, (hat is, the metrics can be applied to any
Viterbi-type algorthm such as PRML, FDTS/DE, RAM-
RSE, ar, MDFE.

FIG. 3A illustrates a block diagram of a branch metric
computation circuit 48 that computes the metric M, for a
branch of a trellis, as in Bquation (13). Each branch of the
trellis requires a circuit 48 (o compute the metric M,.

A logarithmic circuit 50 computes the first term of the
right hand side of (13) (i.c.

' det &
c,Edet <

and a quadratic circuit 52 compules the second terms of the
right hand side of (13) G.e. N/ C;"N-nc, 'n,), The arrows
through the circuits 50 and 52 represent the adaptive nature
of the Virterbi-like detector 30. A sum circuit 53 computes
the sum of the outpuis of the circuits 50 and 52.

As stated above, the covariance mairix is given as:

[a: r.',-] (4
C= .
4 n,f P
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Using standard techniques of signal processing, it can be
shown that:

det C; _ T -1
der e TG &

as)

This ratio of delerminants is refemred 1o as o7, ic.:

_ det C;
1= dae;

(16)

= -l e

It can be shown by using standard techniques of signal
processing that the sum of the last twe terms of (13), i.e. the
output of the circuit 52, is: ’

LS e IR Hog ] umn

_efay

of

8

Where the vector w; is (L+1)-dimensional and is given by:

uf =L w(®) w3 ... wL+ DI {19)

ol

Equations (17), (18) and (16) (the circuit 52) can be imple-
mented as a tapped-delay line as illustrated in FIG. 3B, The
circuit 52 has L delay circuits 54. The tapped-delay line
implementation shown in FIGS. 3A and 3B is also referred
to as a moving-average, feed-forward, or finite-impulse
response filter. The circuit 48 can be implemented using any
type of filter as appropriate.

The adaglaliou of the veclor of weights w; and the
quantity o;° as new decisions are made is essentially an
implementation of the recursive least squares algorithm.
Alternatively, the adaptation may be made using the least
mean squares algorithrn.

The quantitics m, that are subiracted from tbe outpu of
the delay circuits 54 are the target response values, or mean,
signal values of (12). The arrows across multipliers 56 and
across square devices 58 indicate the adaptive pature, ie.,
the data dependent naturs, of the circuit 52. The weighis w,
and the value o* can be adapted using three methods, First,
w; and o;* can be obtained directly from Equations (20) and
{16), respectively, once an estimate of the signal-dependent
covariance matrix C, is available. Second, w, and o;* can be
calculated by performing a Cholesky factorization on the
inverse of the covariance matrix C,. For example, in the
LD LT Cholesky factorization, w; is the first column of
the Cholesky factor L; and o? is the first element of the
diagonal mairix D,. Third, w; and g/ con be computed
directly from the dala using a recursive least squares-lype
algorithm. In the first two methods, an estimale of the
cavariance maleix is obtained by a recwrsive least squares
algorithm. )

Computing, the branch metrics in (10} or (13) requires
knowledge of the signal statistics. These statistics are the
mean signal values m, in (12) as well as the covariance
matrices C; in (13). In maguetic recording systems, these
statistics will generally vary from track fo track. For
example, the statistics that apply to a track at 2 certain radius
will differ from those for another track at a different radius
due to different linear track velocities at those radii. Also, (he
signal and noise statistics will be different if a head is flying
slightly off-track or if it is flying directly over the track, The

20
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head skew angle is another factor that contributes to different
statistics from track to track. These factors suggest that the
system that implements the melric in (13) needs 1o be
flexibie to these changes. Storing the statisties for each track
separately is very difficult because of the memory span
required to accomplish this. A reasonable alternative is to
use adaptive filtering techniques igtrack the‘ne‘édegl\statis-

tics,
Tracking the mean signal vilues m, is generally done sa
that these values fall on prespecified targets. An adaptive
front-end equalizer is employed to foree the signal sample
values to their targets. This is certainly the case with partial
response largets used in alporithms like PR4, EPR4, or
EEPR4 where the target is prespecified to one of the class-4
partial responses. For example, in a PR4 system, the signal
samples, if there is no noise in the sysiem, fall on one of the
three target values 1, 0, or —1. Typically this is done with an
LMS-class (least mean-squares) algorithm that ensures that
the mean of the signal samples is close to these target values.,
In decision feedback equalization (DFE) based detectors or
hybrids between fixed delzy free scarch and DFE, such as
FDTS/DF or MDFE, (he target response need not be pre-
specified. Instead, the target values are chosca on-the-fly by
simultanecusly npdating the coefficients of the front-end and
feed-back equalizers with an LMS-type algorithm.

When there are severe nonlinearities in the systern (also
referred to as nonlinear distortion ar nonlinear ISI), a linear
equalizer will generally not be able to place the signal
samples right on target. Instead, the means of the signal
samples will fall at a different value. For example, in a PR4
system, the response lo & sequence of written symbols. . .,
=, +, &, . . . might result in mean sampie target values .. .,
0,1,0.9, ..., whilc a sequence of writlen symbols . . ., +,
-, &, . . . might result in a sequence of mean sample
values. .., 0.95,=1.05,0,.... Clearly, in this example, what
shoudd be a target value of 1 becomes either 1, 0.9, or 0.95
depending on the written sequence. Because mean values
and not noisy samples are being considered, this deviation is
due (o nonlinearities in the system. There are two fixes for
this problem. The first is to employ a nonlinear filter (neural
petwork or Volterra series filter) that is capable of overcom-
ing these nonlinear distoriions, Allhough recently very
popular, such a method introduces further correlation
between noise samples due 1o the nonlinear characler of the
filter. The second fix is fo track the nonlinearities in a
feedback loop and use the tracked value in the melric
computation. For example, let the response to a written
symbol sequence ..., S, +, @, ... be consistently . , ., , 0,
1,0.9, ... Then, rather than using the valee 1 in the metric
computation for the third tarpet, this behavior can be tracked
and the value m~0.9 can be used.

In the remainder of this discussion, for simplicity, it is
assurned that the front-end equalizer is placing the signal
samples right on the desired target values and that there is no
need for further mean corrections. The focus is shiffed to
tracking the noise covariance matrices needed in the com-
putation of the branch metries (13).

Assume that the sequence of samples r, 1,5, . . ., Iy I8
observed. Based on these and all other neighboring samples,
after an appropriate delay of the Viterbi trellis, a decision is
made that the most likely estimate for the sequence of
SYmbOlS 4 g, -+ - s Bperar, S8 pes e - o5 8y e Here Lis the
noise corelation Jength and K=K,+K +1 is the ISI length.
Let the cument estimate for the (L+1)x(L+1) covariance

H

20

3

<

50

50

65

10
matix corresponding to the sequence of symbols B pperes
Srpare b8 Cldrscy - - + 5 By une)- This symbol is abbreviated
with the shorter notation,‘ff (&). If the estimale is unbijased,
the expected value of the estimate is:

EC()-E [NF]

where N, is the veelor of differences betwoen the observed
samples and their expected values, as defined in (12).
Note that once the samples 1, .4, . .+ 5 Iy, 816 Cbserved,

=23

\and once it is decided that most likely they resulted from a

SCEIGS of written symbols 4, ., . . . , 8,p.4x, the sequence of
target (mean) valies my; m,,,, . . . , m,, is known that
correspond 10 these samples, They are used io compuie the
veclor N, with which the empirical rank-one covariance
matrix B,,ﬁ’} is formed. In the absence of prior information,
this rank-one' matrix is an estimate for the covariance mairix
for the detected symbols. In a recursive adaplive scheme,
this rank-one data covaciance estimate is used to update the
current estimate of the covariance matrix C (). A simple
way to achieve this is provided by the recursive least-
squares (RLS} algorithm. The RLS compuies the nexi cova-
riance matrix estimate C'(3) as:

C@-pOCEHI-POINT (22)

" Here, B(t), 0<p(0<1, is a forgetting factor. The dependence

on t signifies that B is a function of time. Equation (22) can
be viewed as a weighted averaging algorithm, where the data
sample covariance N7 is weighted by the factor [1-$(1)],
while the previous estimate is weighted by B(t). The choice
of B(t) should reflect the nonstationarity degree of the noise.
For example, if the nonstationarity is small, B(t) shonld be
close to 1, while it should drop as the nonstationarity level
increases. The forgetting factor is typically taken time-
dependent to account for the start-up conditions of the RIS
algorithm in (22). As more data is processed, a steady-state
is expected 1o be achieved and [(3(t) i made to approach a
constant value. Initiaily, B(t) is close to zeto, to reflect the
Iack of a good prior estimate €(3), and to rely more on the
data estimate. With time, B(t) is increased and settles around
a valve close to 1.

The fmpact of the initial conditions in (22) decays expo-
nentially Fast. Hence, the algorithm (22) can be started with
an arbitracy initial guess for the covariance matrix C{8), with
the only constraint being that the matrix be positive
semidefinite, ¢.g, 2 zero matrix or an idenlity matrix,

The one-dimensional equivalent of equation (22) is

aum2=ﬂaddz+[1‘ pIZ.

This equation can be used in conjunction with the metric in
(10). ’

It is important to poiat out that, due to the signal-
dependent character of the media noise, there will be a
different covariance matrix to track for each branch in the
iree-irellis of the Viterebi-like detector. Practical consider-
ations of memory requirements, however, limit the dimen-
sions of the matrices to be tracked. Fortunately, simgple 2x2
matrices are enough to show substantial improvement in
error rate performance,

The following example illustrates how the algorithm in
(22) works. Assume 2 PR4 target response with a simple
Isellis structure as shown in FIG. 4 Notice 1hat for PR4, the
symbols can be equated to the trallis states, as is #llustrated
in FIG. 4 The oumber next to each branch in FIG. 4
represents the farget value (mean sample value) for the
corresponding path between states. The target values in PR4
can be one of three values -1, 0, or 1.

23
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In this example a noise correlation length of L=1 is
assumed. It is also assumed thai the leadiog and trailing ISI
- lengths are K =0 and K =1, respectively, to give the to1zl ISI
length KaK 4K +1=2 for the PR4 response. Because L=1,
signal covariance matrices of size (L+1)x({L+1)=2x2 need to
be tracked. The number of these matrices equals the number
of different combinations of two copsecutive branches in the
trellis. A simplc connt in FIG. 4 reveals that this number is
16, because there are 4 nodes in the trellis and 2 branches
entering and Ieaving each node.

Assume that, using the branch metric in (13), the Viterbi-
like detector decides that the most likely writien symbols a,,
8,15 2y, ¢QUAL {8, 85,15 8r0a }={®, +, ~}. This is illustrated

in FIG. 5, where the comesponding path through the trellis
is hlghllghlcd The noisy signal samples carresponding to
the trellis branckes are r;=0.9 and 1, ,=-10.2, which deviate
sliphtly from their ideal parual 1e5ponse target valnes of 1
and 0, respectively.

Sup, uw lhal prior lo making the decision {4, Sgazs

Siar= -} the estimate for the a covadance matrnix
assoc:atcd with this sequence of three symbols is

(24)

—02]
0.8

BO. +. = [02

Let the forgetting factor be B=0.95. To vpdate the covari-
ance matrix the vector is first formed:

Bl(r1) =0T ={-01 0.2F @)
The rack-one sample covadance matrix N N7 is used to find
the covariance matrix update:

HO, +, =S, +. )+ - HENT 26)
_ (04755 -0.189
'[-0.189 0.7620

The matrix C'(&®, +, =) beoomes our estimate for the
covatiance matrix corresponding to this particular symbol
sequence {trellis path) and is used to compute the metrics
(13) in the subsequent steps of the Viterbi-like algorithm.

FIG. 6 illustrates a flowchart of a method of detecting a
sequence of adjacent signal samples stored on a high density
magnetic recording device. Viterbi sequence deltection is
performed using a signal sample at step 38. The sequence
detection produces decisions which are ontput at step 40.
The signal sample is delayed at step 42. The past samples
and detector decisions are used to update the noise statistics
at step 44, Branch metrics, which are used in the séquence
detection step 38, are caleulated at step 46.

It can be understood by those skilled in the art that the
method of FIG. 6 can be performed on a computer. The steps
may be coded on the computer as a series of instructions,
which, when cxecuted, cause the computer to detect a
sequence of adjacent signal samples stored on a high density
maguetic recording device. The computer may be, for
example, a personal computer, a workstation, or a main-
frame computer. The computer may also have a storage
device, such as a disk array, for storage of the series of
insiructions.

Simulation results uwsing two partial response detection
algorithms, namely PR4 and EPR4 are now pressoled. To
create realistic waveforms, cormpted by media noise, an
efficient stochastic zig-zag medel, the TZ-ZT modsl was
used. These waveforms are then passed through the detec-
tors. A Lindholm fnductive head is used for both wriling and
reading. Table 1 presents the recording parameters of the
model. These recording parameters are chosen so that with

1q
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a moderately low symbol density per PWS50, 2 low aumber
of transition widths a per symbol transition separation
results. Namely, at 3 symbols/PW50 a transition separation
of only 2.9 a is present. The trapsilion prefile was modeled
by an error function, where the transition width a denotes the
distance from the transition center o the point where lhc
magnetization equals M, /2.

‘TABLE 1

Recording patameters used in simulations,

Parameter Symbol Value
media remanence M, 450 kA/m
media coercivity H, 160 kA/m
media thickness & Q.02 ym
medin cross-track correlation width 5 200 A
head-media separation d 15 nm
head field gredient factor Q 08

had gep length g » 0,135 pm
track width W 2 m
lraosition width parameler a 0.01¢ pm
percelation length L=14a 00256 um
50% pulse widlh PWsD 0167 yum

The symbols ntilizing the (0,4) run length limited code are
wriiten. No error correction is applied, so the obtained error
rates are oot bit error rates, but (raw) symbol error rates.

Both the PR4 and EPR4 deteciors were tested vsing the
following three different metric computation methods: the
Euclidian metric (8), the variance dependent metdc (10).
also referred to as the C1 metrie, and the 2%2 correlation
sensitive metric (13), named the C2 metric for shorl. For a
PR4 target response, the total IS] length is KsKAK+1<2,
wheee the leading and trafling ISE lengths are K =0 and K =1,
respeciively. The noise correlalion length for the Buclidian
and the C1 metrics is L=0, and for the C2 metric the poise
corrclation lenpth is L=1. These three PR4 detectors are
referced to as PR4(Euc), PR4(C1), and FR4(C2).

Similarly {0 lbe PR4 detectors, three EPR4 delectors were
tested, EPR4(Euc), EPR4(CT) and EPR4(C2). The only
difference between the PR4 detectors and the EPR4 detec-
tors are the target response and the ISI length, which for the
EPR4 target response equals KmK+K +1=3, with K=1 and
K=l

The signal obtained by the TZ-ZT model is already
corrupted with media noise. To this signal white Gaussian
noise was added lo simulate the head and electronics noise
in a real system. The power of the additive white Gaussian
noise is quoted as the signal to additive white Gaussian noise
ratio, S(AWG)NR, which is obtained as:

2 27
SAWGINR= 1010612 n
N

where A, is the mean (media noise free) amplitude of an
isolated pulse and o2, is the variance of the additive white
Gaussian noise. The noise distorted signal is first passed
through a low-pass filter 1o clean out the noise outside the
Nyquist bal. The sigoal is then sampled at a rate of one
sample per symbol and subsequently passed through a
partial response shaping filter, either PR4 or EPR4. The
partial response shaping filter is implemented as an adaptive
FIR filter whose tap weights are adjusied using the LMS
algorithm. Note that both filters add correlation (o the noise.
For the C1 and C2 metrics in (10} and (13), the RLS
algorithms (22) and (23) are used to estimate the noise

5 varlances and covariance matrices for the branch metric

compuiations. In both cases, the forgeiting factor is set to
(=0.95.
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All six detection algorithms were tested at three different
recording densities.

Symbol separation of 4.4 a, This recording density corre-
sponds to a symbol density of 2 symbols/PW50, see Table 1.
FIG. 7 shows the symbol ercor rate performance of the PR4
detectors for different addilive noise SNRs. The media noise
is embedded in the system, which is why the x-axis on the
graph is labeled as S(AWG)NR instead of simply SNR. At
this density, the PR4(Euc) and PR4({CC1) detectors perform
just abowt the same and the PR4(C2) detector ontperforms
them both by about 3 dB. The reason for this is that the PR4
shaping filter averages noise samples from diffsrent
symbols, which masks the signal dependent nature of the
media noise. This is why thers is not much to gain by using
PR4(C1) instead of PR4(Euc). The PR4{C2) detector per-
forms better because it partially removes the effects of noise
correlation introduced by the PR4 shaping filter. FIG. 8
shows how the EPR4 detectors perform at this same density
(symbol separation 4.4 1).: The PR4(C2) has the best per-
formance and PR4(Euc) has the worst. The differenee in
performance at the error rate of 10~ is only about 0.5 dB
between PR4(Euc) and PR4(C2). This is because the media
nojse power at this density is low and the signal i well
matched 1o the target so the EPR4 shaping filler does not
introduce unnecessary noise correlation.

Symbol separation of 3.5 a. This recording density corre-
sponds to a symbol density of 2.5 symbols/PW50. FIG. 9
shows the performance of the PR4 detectors at this densily.
FIG. 9 is similar to FIG. 7. except that the error rates have
increased. This is again due to 2 mismatch between the
original signal and the PR4 target response, which is why the
PR4 shaping filter introduces correlation in the noise. PR4
(C2) still outperforms the two otber algorithms, showing the
value of exploiting the comelation across signal szmples.

FIG. 10 shows the error rates oblained when using the
EPR4 detectors. Due o a higher density; the media noise is
higher than in the previous example with symbol separations
of 4.4 a. This is why the graph in FIG, 10 has moved (o the
right by 2 dB in comparison to the graph in FIG. 8. While
the required S(AWG)NR increased, the margin between the
EPR4{Euc) and EPR4(C?2) also increased from about 0.5 dB
to about 1 dB,suggesting that the correlation-sensitive met-
tic is more resilient to density increase. This is illustrated in
FIG. 11 where the S(AWG)NR required for an error rate of
1075 is plotted versus the Linear density for the three EPR4
detectors, From FIG. 11 it can be seen that, for example,
with an S(AWG)NR of 15 dB, the EPR(Euc) detector
operates at a linear density of about 2.2 symbols/PW50 and
the EPR4{C2) detector operates at 2.4 symbols/PW50, thus
achieving a gain of about 10% of linear density. Symbol
separation of 2.9 a. This recording density corzesponds to a
symbol density of 3 symbals/FWS0. Due to a very low
number of symbols per a, this is the density where the
detectors significantly lose performance due to the percola-
tion of magnetic domains, also referred to as nonlinear
amplitude loss or partial signal erasure. FIGS. 12 and 13
show (he performance of the PR4 and EPR4 families of
detectors at this density. The detectors with the C2 meide
outperform the other two metrics. The error rates are quite
high in all cascs. This is because at the symbol separations
of 2.9 a, uenlinear effects, such as pariial erasure due to
percolation of domains , start to dominate. These effects can
only be undone with 2 nonlinear pulse shaping filter, which
have not been employed here. )

The experimental evidence shows that the correlation
sensitive sequence detector outperforms the correlation
insensitive detectors. It has also been dertonstrated that the
performance margin between the comelation sensitive and
the correlation insensitive detectors grows with the record-
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ing density. In other words, the performance of the come-
Iation insensitive detector deteriorates faster than the per-
formance of the correlalion sensitive detector,
Quantitatively, this margin depends on the amount of cor-
felation In the noise passed through the system. -
Qualitatively, the higher the comelation between the noise
sarples, the greater will be the margin between the CS-SD
and its correlation insepsitive counter part.

The teachings of the present invention can be extended
beyond Viterbi-like detectors 10 apply to turbo decoders,
soft-decision detectors, and detectors vtilizing the Viterbi
algorithm, the BCIR algorithm, the Soft-Oulpui Viterbi
Algorithm (SOVA), and other similar algorithms.
Traditionally, these algoritbms and devices have been
derived and designed asspming that the communication
chanmel is memoryless, i.¢. that the noise in the channel is
white and wncorrelated. However, the teachings of the
present invention, in which the branch metric computations
are performed assuming (he channel has memory, ie, the
noise is correlated and the noise slalistical correlation is
possibly signal dependent, can be applied to any device or
algorithm in which branch metrics must be computed.

FIG. 14 is an illustration of a portion of & communications
system 100 having a detector 102 with paraflely concat-
enated decoders 104 and 106. The output of 2 communica-
tions changel 108 is connected to a receiver 110, The
receiver includes the detector 102, a first decoder 104, and
asecond decoder 106. The detectar 102 processes the output
of the channel 108 and feeds decisions to the decoders 104
and 106. The decoders 104 and 106 can be, for example,
turbo decoders or any other iterative decoders that use, for
example, low density parily check codes, linear block
coders, or convolutional codes.

FIG, 15 is an illusteation of a pertion of a communications
system 112 having the detector 102 connected in a serially
concatenated arrangement to a decoder 114. The detector
102 and the decoder 11 comprise a receiver/decoder 116.

The detector 102 can use any type of appropriate algo-
rithm such as, for example, BCIR, Viterbi, SOVA, or any
other instance of the Generalized Viterbi Algorithm (GVA).
The detector 102 can wark on a irellis, tree, finite-state
machine, graph, or any other strecture with branches for
which the detector 102 has a component that must compute
branch metrics. Because this component reflects the assump-
tions on the noise memory and slatistics, the teachings of the
present invention can be designed into this component such
that the detector 102 is acourate when the chaunel 108 has
memory, ie. the channel 108 has intersymbol interference
and comelated noise with signal dependent statistics,

As an example, the BCIR algorithm ean be deseribed for
chanoels with memory. The following equations nse stan-
dard notation to describe the BCIR algorithm, as described
in L. R, Bahl et al., “Optimal Decoding of Linear Codes for
Minimizing Symbol Error Rate”, IEEE Transaclions on
Information Theory, I1T-20:284-87, March 1974 and C.
Heegard et al, Turbo Coding, 1999, Kluwer Academic
Publisbiers, which are herein incorporated by reference.

BCIR soft-owlput algorithm for Markov noise with

memory length L:

Initialization
(=1, ag(m)=0 for ma0 29)
Pr{0)=1, Bu@)=0 for mu0 (29)
2=0, =0, . . ., Z;_,=0 )

Fork=1,2,.... K
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-contined
7elm's m) = Pz = mlxg.q =m) 31
PIENEANEE 0 R N TS MO A3 |
= Plag = il = ') (205705 Mare By 5
Ol = ) ey DU ) e ()] 33)
Fock=K-1,K-2,....0
B =Y Dt a) e o) B9 30
Fork=0,1,....K
A () = 2 () By (m) (35)
& (m', m) = e {m" Yy O’ ) (om) G815

Thus, the branch metric, as denoted by the second half of
Equation x, is compuied e¢xactly the same way as the branch
melric of Equations 6, 9, 10, 11, and 13. When the noise
process is Gaussian, the branch metric can be computed
using Equation 13 and the arrangements described in FIGS.
3A and 3B.

The peneralization of the case described above for the
BCIR algorithm can be made for any other soft outpul or
hard output algorithm defined on a irellis or a graph of any
communications {or other dypamic) system. The place in the
detector where the branch meiric is computed can be sub-
stituled by the mefric compulation as described in Equations
6, 9, 10, 11, 13 and FIGS. 3A and 3B.

While the present invention has been described in con-
junction with preferred embodiments thereof, many modi-
fications and variations will be apparent to those of ordinary
skill in the art. For example, the present fnvention may be
used to detect a sequence that exploits the correlation
between adjacent sipnal samples for adaptively detecting z
sequence of symbols through a communications channel.
The foregoing description and the following claims are
intended to cover all such modifications and variations.

‘What is claimed is:

1. A method of determirning branch metric values in a
deteclor, comprising:

reeciving a pluratity of 1ime varfant signal samples, the
signal samples having one of signal-dependent noise,
correlated noise, and both signal dependent and corre-
lated noise associated therewith;

seiecting a branch metric function at a certain time index;
and

applying the selected function to the signal samples to
determine the metric values.,

2. The method of claim 1, wheréin the branch metric
function is selected from a set of signal-dependent branch
metrie functions.

3. The methed of ¢laim 1, wherein the detector is a hard
decision detector.

4. The method of claim 1, wherein the detector is a soft
decision detector. .

5. The method of claim 1, wherein the detector is selected,
from a group consisting of a Viterbi detector, a soft cutput
Viterbi detector, a Generalized Viterbi defector, and a BCIR
detecior.

6. A method of delecting a sequence that exploils a
correlation between adjacent signal samples for adaptively
detecting a2 sequence of symbols throngh a communications
chanael baving intersymbol interference, comprising:

(2) performing sequence detection on a plurality of signal
samples using a plurality of correlation sensitive branch
metrics;

(b) outputting a delayed decision on a transmitted symbol;

",
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{c) outpntiing a delayed signal sample;
{d) adaptively updating a phurality of ncise covariance
matrices in response {o the delayed signal samples and
the delayed decisions;

(¢) recaleulating the plurality of correlation sensitive
branch metrics from the noise covariance matrices
using subsequent signal samples; and

(E) repeating steps (a)—(e) for every new signal sample.

7. The method of claim 6, wherein the chanuel has
nonstationary noise. :

8. The method of claim 6, wherein the channel has
nonstationary signal dependent noise.

9. The method of claim 6, wherein performing a sequence
detection includes performing a hard Viterbi sequence detec-
tion. .

10. The method of claim 6, wherein performing a
sequence delection includes performing a soft Viterbi algo-
rithm sequence detection.

11. The method of claim 6, wherein performing a
sequence detection includes performing a2 BCIR sequence
detection.

12. The methed of claim 6, wherein performing a
sequence detection incledes performing a generalized Vit-
erbi algorithm sequence detection.

13. The method of claim 6, wherein performing a
sequence detection includes performing a soft decision
sequence detection.

14. The method of claim 6, wherein performing a
sequence detection includes performing a hard decision
sequence detection.

15. A receiver, comprising:

a sequence detector receiving communications signal
samples wherein adjacent signal samples have a cor-
relation and wherein the signal samples have intersym-
bol interference, the ssquence detector for detecting a
sequence in the communications signal samples by
exploiting the correlation; and

at leasl one decoder conaecled o the sequence detecior.

16. The receiver of claim 15, further comprising a second
decoder parallely concatenated with the decoder.

17. The receiver of claim 15, wherein the sequence
delector al the decoder are serially concatenated.

18, The receiver of claim 17, further comprising a second
decoder serially concatenated with the decoder.

19. The receiver of claim 15, wherein the decoder is an
ilerative decoder.

" 20. The receiver of claim 16, wherein the decoder is an
iterative decoder.

21. The receiver of claim 16, wherein the second decoder
is an iterative decoder.

22. The receiver of claim 17, whegein the decoder is an
iterative decoder.

23. The receiver of claim 20, wherein the decoder uses
codes selected from the group consisting of low deosity
parity check codes, linear block codes, and convolutional
codes.

24. The receiver of claim 15, wherein the decoder is a
turbo decoder.

25. The receiver of claim 15, wherein the sequence
detector is a hard decision detector.

26. The receiver of claim 15, wherein the sequence
detector is a soft decision detector,

27, The receiver of claim 15, wherein the sequence
delector js selected from the group consisting of a soft output
Viterbi delector, a generalized Viterbi detecior, a BCIR
delector, and a Viterbi detector.
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