Nanofluidic Energy Conversion

Xi CHEN

Ling Liu, Jianbing Zhao (Ph.D. students)

Department of Earth and Environmental Engineering
Columbia University

Collaborating with Yu Qiao at UCSD
Advantage of Nanoporous Materials

Nanoporous materials:

- Zeolites, nanoporous silicas, aluminas, TiO$_2$, Au, Cu, PMMA, carbon nanotube ...) are solids containing large volume fractions (30-90%) of nanometer-sized pores.
- They are usually synthesized by templating or nanocasting techniques, and used for selective sorption or catalysis. Cost is relatively low.
- Pore size from <1nm to about 100nm.
- The specific surface area is ~100-2000 m2/g.
Ultralarge Surface of Nanoporous Materials: Ideal Platform for Energy Conversion

The very large inner surface of a nanoporous material (~10,000,000 times larger than its bulk counterparts) provides an ideal platform for surface energy conversion processes: And nanoporous solid and liquid can make seamless coupling to become an attractive *multifunctional nanocomposite*.

\[
\text{(Total Converted Energy)} = \text{(Surface Energy Density)} \cdot \text{(Total Surface Area)}
\]

Adjustable → Variable performance
Large → Exceptional efficiency
Nanofluidic Energy Conversion

- Mechanical
 - Piezo-Actuation
 - Energy Harvesting
 - Thermal Actuation
 - Energy Absorption

- Electrical
 - Heat Generation
 - Energy Harvesting

- Thermal
Nanofluidic Energy Absorption

Mechanical

Electrical

Heat Generation

Energy Harvesting

Thermal

Energy Absorption
Nanofluidic Energy Absorption

Energy Absorption: Conversion of Mechanical Energy to Other Forms

- **Capillary effect**: Conversion of mechanical work to the excess solid-liquid interfacial tension
- **Viscosity effect**: Direct conversion of mechanical work to heat via internal/interface friction (like dashpot)

Both Effects are amplified by the total surface area (A):

$$E = \Delta \gamma A$$

- Adjustable interface properties \rightarrow variable performance
- Fundamental behaviors of molecules in confined nanoenvironment
Suspension of hydrophobic nanoporous particles in a nonwetting liquid. A nanocomposite which seamlessly integrates the nanoporous solid “matrix” with liquid “filler”
Example of NEAS Sorption Isotherm

Hydrophobic nanoporous silica particles immersed in water.
Average pore size: 10 nm.
Specific pore volume: 0.6 cm3/g.
Specific surface area is \sim500 m2/g.

Energy absorption: **150 J/g**
(orders-of-magnitude higher w.r.t. conventional energy absorption systems, 0.1 J/g of Ti-Ni alloy, 1-10 J/g of textile composites, etc.)
Example of Adjust Energy Absorption Performance

\[E = \Delta \gamma \cdot A \]

Both \(P_{in} \) and \(\frac{dP}{dV} \sim \Delta \gamma \)

Adjustable system and materials parameters \(\rightarrow \) variable performance
Nanofluidic Energy Actuation

- Mechanical
 - Piezo-Actuation
 - Thermal Actuation

- Electrical

- Thermal
Actuation: Conversion of other forms of energy (e.g. thermal energy or electric energy) to mechanical motion

Electro-capillary effect: As an electric potential is applied across a solid-liquid interface, the interface tension varies, which may cause liquid motions (electric to mechanical energy conversion)

Thermo-capillary effect: As temperature changes, the solid-liquid interfacial tension varies accordingly, which may cause liquid motions (thermal to mechanical energy conversion)

- Interface energy \sim electrical field or temperature
- Electrical/thermal fields can cause hydrophobic \Leftrightarrow hydrophilic transition which leads to liquid motions

$$E = \delta \gamma A$$
Actuation based on Thermo-capillary Effect

\[E = \delta \gamma \cdot A \]

Output energy density

\[E = \delta \gamma \cdot A \approx 1-100 \text{ J/g} \]

\[\delta \gamma \approx 1-100 \text{ mJ/m}^2; \ A \approx 100-1000 \text{ m}^2/\text{g} \]

(compared with 1-100mJ/g for piezoelectrics, shape memory alloys, etc.)
The thermo-/electro- capillary effect, which is “trivial” in conventional materials, becomes significant in nanoporous materials.
Nanofluidic Energy Harvesting

- Mechanical
 - Electrical
 - Thermal

Energy Harvesting
Heat Generation
Energy Harvesting
Energy Harvesting: Conversion of other forms of energy (e.g. thermal energy or mechanical energy) to electricity

As an electrolyte solution enters a nanopore, since ions at the solid-liquid interface are subjected to unbalanced forces from the solid and the bulk liquid phase, the ion structure becomes anisotropic, forming a double layer. That is, an solid electrode nanochannel can spontaneously absorb ions.

The double layer structure causes zeta potential difference across the solid-liquid interface.

- The surface ion density and zeta potential ~ temperature and mechanical motions.
- Thermal/mechanical field → electricity
- Relatively high efficiency for harvesting low-grade heat (waste heat recovery)

\[E = d \gamma A \]
Thermoelectric Energy Harvesting using Nanoporous Materials

- At higher temperature, more solvated ions diffuse away from an electrode surface. If connected with a low-temperature electrode, a current is generated.
- The effect is amplified significantly by the ultrahigh surface area.
Semi-Continuous Energy Harvesting

If the temperature difference is constant, eventually the voltage would vanish as the new equilibrium is reached.

However, as the two electrodes are disconnected, grounded, and then reconnected, the energy conversion capacity of the system can be rapidly recovered.
Mechano-electric Energy Harvesting

- By conducting a flow of electrolyte solution across a nanoporous electrode, significant output electric power was measured.
- The energy conversion is achieved by mechanically disturbing the surface ion structure at the large inner surfaces of nanopores.
- The energy conversion is semi-continuous, based on the capacitive effect.
- The voltage is independent of the electrode distance and the flow rate.
Nanofluidic Energy Conversion

- Mechanical
 - Piezo-Actuation
 - Energy Harvesting
 - Energy Absorption
 - Thermal Actuation

- Electrical
 - Heat Generation
 - Energy Harvesting

- Thermal
Nanofluidic Energy Conversion System underpins the Building Blocks of the Next-Generation Multifunctional Structures & Systems

- **Self-protective**
 Absorb harmful vibration/noise, protect from impact/blast
- **Self-powered**
 Wasted/harmful mechanical/thermal/solar energy → electricity
 Wireless powering sensors for smart infrastructure
- **Self-actuated**
 Thermo-electric actuation for volume memory/optimization
Science of Nanofluidics vs. Energy Conversion

Materials Variables
- Pore Size
- Pore Geometry
- Liquid Phase
- Solid Phase
- Surface Modification

System Variables
- Temperature
- Electrical Field
- Mechanical Load

Infiltration
Transport

Performance of Nanoporous System
For Energy Absorption:
Max P_{in} and τ

For Thermal Actuation:
Max $\partial P_{in}/\partial T$

For Electro Actuation:
Max $\partial P_{in}/\partial E$

For Thermal Harvesting:
Max $\partial \rho/\partial T$

For Mechanical harvesting:
Max $\partial \rho/\partial v$

Surface Energy Density
Surface Area

Energy Output
Conclusion: Nanofluidic Energy Conversion

- Nanoporous materials provide an ideal platform to amplify beneficial surface energy conversion effects, to effectively address grand challenges in energy efficiency and sustainability & next generation materials.

- By using lyophobic nanoporous materials, high performance energy absorption systems can be developed.

- By controlling the effective wettability thermally or electrically, high energy density and high displacement actuation liquid can be developed.

- By controlling surface ion density in nanopores thermally or mechanically, useful electric energy can be harvested with high efficiency.

- The design and optimization of the nanocomposite relies on the science of nanofluids, where solid mechanics and fluid mechanics meet at nanoscale, which leads to the unique behaviors of the confined liquid molecules and ions (a wide open scientific area).