Understanding the Self-Assembly Behavior of Nanoparticles and Polymers

So-Jung Park
Department of Chemistry
University of Pennsylvania
Inorganic Nanoparticle/Polymer Hybrid Materials for Alternative Energy

CdSe nanocrystals
Overview

1. Cooperative Assembly of Nanoparticles and Block-Copolymers
Inorganic Nanoparticle/Polymer Hybrid Materials for Alternative Energy

CdSe nanocrystals
Overview

1. Cooperative Assembly of Nanoparticles and Block-Copolymers

2. Self-Organizing Organic Electronic Materials
Cooperative Assembly of Nanoparticles and Block-Copolymers

Random Incorporation of Nanoparticles as Simple Solutes

Interfacial Assembly of Nanoparticles

1) DMF

2) H₂O

3) Dialysis
Interfacial Assembly of Quantum Dots in Discrete Block-Copolymer Aggregates

Co-assemblies of PAA$_{41}$-b-PS$_{193}$ and CdSe nanocrystals in water

Cavity-like Structure of Nanoparticles

- Polymer shell: A monolayer of block-copolymers with PAA at the exterior
- Polymer core: Reverse micelles of block-copolymers
- QDs arranged at the interface between the polymer core and the polymer shell.

Origin of the Interfacial Assembly

- **Enthalpic Effect**

- **Entropic Effect**

![Enthalpic Effect Diagram](image1)

![Entropic Effect Graph](image2)

![Experimental Images](image3)
Control of the Location of Nanoparticles

Polymer/QD = 100 Polymer/QD = 400

[Images of nanoparticles with varying Polymer/QD ratios]

Graphs showing:
- Radius (nm) vs. \(\Phi_{\text{QD}} \)
- Shell thickness (nm) vs. \(\Phi_{\text{QD}} \)
- \(r_c/r \) vs. \(\Phi_{\text{QD}} \)

Legend:
- \(r_c \)
- \(r \)

of QDs
Distance Dependence Studies Using the Controllable Shell Thickness

No silver: 84.38 ± 50.66 cts/ms
with silver: 281.59 ± 126.01 cts/ms
What Controls the Structural Parameters?

$\text{PAA}_{38}^{\text{--}}\text{b-PS}_{108}$

$\text{PAA}_{38}^{\text{--}}\text{b-PS}_{154}$

$\text{PAA}_{38}^{\text{--}}\text{b-PS}_{189}$

$\text{PAA}_{38}^{\text{--}}\text{b-PS}_{247}$
Nanoparticle Size Determines the Size of Co-assemblies

- 25 nm iron oxide particles
- 4 nm iron oxide particles
The Incorporation of Nanoparticles Reduces the Size Distribution.

- Nanoparticles narrow the size distribution of the assemblies formed.
- As the concentration of nanoparticles is decreased, the size distribution gradually gets larger.
Nanoparticle-Induced Morphological Changes

- Nanoparticles play an active role in the block-copolymer assembly processes rather than simply being incorporated passively in the hydrophobic domain as solutes.
- Nanoparticles cause a drastic morphology change of block copolymer assemblies.
Morphological Transition Induced by Nanoparticle Clustering
Membrane Curvature Change Induced by Nanoparticle clustering

Figure 2: Clathrin-coated vesicle budding where yolk protein is being incorporated into vesicles in oocytes. *Taken from McMahon et al. Nature, 438, 590 (2005).*
Overview

1. Cooperative Assembly of Nanoparticles and Block-Copolymers

2. Self-Organizing Organic Electronic Materials
Self-Organizing, Optically Active Organic Materials

\[\text{CHCl}_3 \rightarrow \text{CH}_3\text{OH} \rightarrow \text{H}_2\text{O} \]

A \rightarrow B \rightarrow C

D \rightarrow E \rightarrow F

IR
Reversible Morphology and Emission Color Changes

![Graph showing PL intensity and wavelength changes with different solvent concentrations.](image)

100% CH₃OH
67% CHCl₃
75% CHCl₃
100% CHCl₃

Wavelength (nm)

PL wavelength (nm)

CHCl₃ CH₃OH CHCl₃ CH₃OH CHCl₃ CH₃OH
Fine Tuning of Emission Colors: Salt Effect
Self-Assembled Building Blocks for Inorganic/Organic Hybrid Materials

Nanotubes wrapped in conjugated block-copolymers

Polar solvent → Conducting Nanowire
Nonpolar solvent → Conducting Nanotube

Spin-coating → Annealing
Summary

- Nanoparticles play an active role in the self-assembly process of block-copolymers, and they can drastically alter the behavior of polymers and the co-assembly structure.

- Cooperative self-assembly of nanoparticles and block-copolymers offer a facile way to control the arrangement of nanoparticles in discrete block-copolymer assemblies.

- We developed conjugated block-copolymers that can self-assemble into various morphologies including core-shell particles, rods, nanowires and layered structures.

- Their band gap and the photoluminescent properties are highly tunable by simply controlling their assembly structures.
Acknowledgements

Hao Sun
Xi-Jun Chen
Rob Hickey
Amanda Kamps
Brenda Sanchez-Gaytan
Sang-Jae Park
Helen Cativo (not pictured)
Zhaoxia Qian (not pictured)

Collaborators

Prof. Mike Fryd, Upenn
Prof. Nigel Clarke, Durham University, UK

Funding

NSF Career Award
ARO Young Investigator Award