Nano Structured Composite Materials for Thermoelectric Applications

Sung-Jin Kim Ewha Womans University Department of Chemistry and Nano Science

April 5, 2010

Thermoelectricity

연구분야

온도차에 의해 기전력이 발생하는 현상(Seebeck 효과) 또는 전류에 의해 열이 흡수,발생이 생기는 현상 (Peltier효과)

응용분야

www.spaceref.com/news/viewpr.html?pid=18796

Configuration of Thermoelectric Module

Laser Cooling Modules

Thermoelectric Figure of Merit

$Z = \alpha^2 \sigma / \kappa$

Seebeck coeff. (α) : morphology, doping state
Electrical conductivity(σ) : carrier concentration

• Thermal conductivity (κ) : phonon scattering

Optimum Transport Coefficients

Figure of Merit : ZT

$$ZT = \frac{S^2 \sigma T}{k} \qquad \kappa = \kappa_e + \kappa_{ph}$$

- High Seebeck coefficient
- High electrical conductivity
- Low thermal conductivity

Difficulties in increasing ZT in bulk materials :

 $S \uparrow \leftrightarrow \sigma \downarrow$

$$\sigma \uparrow \leftrightarrow S \downarrow and k \uparrow$$

Selection Criteria for Candidate Materials

$$Z_{\rm max} \propto \gamma \frac{T^{3/2} \tau \sqrt{\frac{m_x m_y}{m_z}}}{k_{latt}} e^{(r+1/2)}$$

- m = effective mass
- τ = scattering time
- r = scattering parameter
- $k_{\text{latt}} = \text{lattice thermal}$
- conductivity
- T = temperature
- γ = band degeneracy

Guiding Principles:

- Narrow band-gap semiconductors : Single carrier systems
- \Box Heavy elements : High μ , low κ
- \Box Large unit cell, complex structure : low κ
- Highly anisotropic or highly symmetric
- \Box Complex compositions : low κ , complex electronic structure
- \Box Mass Fluctuation : low κ
- □ High density of states near the Fermi level : high Seebeck

coefficient

New direction : Nano-based Thermoelectrics

 Minimizing the thermal conductivity : Thermal conductivity can be significantly reduced by the scattering of unwanted heat flow at the interfaces

 Maximizing Seebeck coefficient: Electronic properties may be dramatically modified due to the electron confinement in nanostructures which exhibit lowdimensional behaviors.

New Approach

Nanoparticles Embedded in Bulk Thermoelectric Materials

Matrixes	Nanoparticles	Nanorods	
PbTe Bi ₂ Te ₃ In ₂ Te ₃	$\begin{array}{c} Bi_2Te_3\\Bi_2Se_3\\Sb_2Te_3\\Bi_xSb_{2-x}Te_3\\Bi\end{array}$	Bi ₂ Te ₃ CdSe Te	

Synthesis of Various Nanoparticles

Sample preparation and measurements

Nanocomposite ingot

sawing

Polishing (400 - 2000 - micro)

Thermal conductivity measurement

Nanocomposite sample

Sample Preparation

Nano-structured Bulk Thermoelectirc Material

PbTe ingot with Bi₂Te₃ nanoparticle

PbTe

Bi₂Te₃ nanoparticles(~150nm)

PbTe with Bi₂Te₃ ingot

Nano-Bulk Composite Thermoelectric Material

PbTe ingot with Bi₂Se₃ nanoparticle

PbTe

Bi₂Se₃ nanoparticles(~80nm)

Nano-Bulk Composite Thermoelectric Material

 \rightarrow

In₂Te₃ ingot with Bi₂Te₃ nanoparticle

In₂Te₃ Matrix

(~150nm)

Power Factor increase with decreasing nanoparticle content

1. Remove 2. Electrochemically deposition

1. Remove 2. Electrochemically deposition barrier oxide layer Bi nanowire material

↓ 3. Electrochemically deposition
 Te nanowire material

↓ 4. Remove AAO template

•Scheme 1. Schamatic of the process employed to produce (a) superlattice structure (b) one element or binary nanowire arrays by pulsed-potential deposition into porous anodic alumina template

SEM image Bi and Te NWs

열전재료용 나노입자, 나노선 제조		Bulk에 나노입자, 나노선 삽입	
Hydrothermal법을 이용한 Bi ₂ Te ₃ 의 morphologies	-	PbTe ingot with Bi ₂ Te ₃	
Colloidal법을 이용한 Bi ₂ Te ₃ 나노입자			14. AL
Bi ₂ Se ₃ 나노입자		PbTe ingot with Bi ₂ Se ₃	
Sb ₂ Te ₃ 나노입자			
Bi _x Sb _{2-x} Te ₃ 나노입자		InTe ingot with Bi _s Se _s	
Bi 나노입자			
CdSe 나노선		InTe ingot with Bi Te	
전기화학법을 이용한 Bi, Te 나노선	and the second		

Conclusions

Nanostructured bulk CompositeTE materials

- New approaches are promising in raising ZT
- Strong thermal conductivity reduction can be achieved through nanostructuring
- Doping studies and processing conditions are important in ZT optimization

Nanoparticles

- Nano particles of various TE materials are obtained

Nanocomposites

- New approaches was provide to control the size and concentration of the nanocomponent in bulk TE materials

Acknowledgment

Ha Yeong Kim Jieun Park, Hee Jin Kim Dr. Mi-Kyung Han Prof. WooChul Kim Yonsei University Prof. Wooyoung Lee Yonsei University

Grant:

21st Century Frontier R&D Programs

NRF,