Thermal Energy Transport in Nanostructured and Complex Crystals

Li Shi

Department of Mechanical Engineering & Texas Materials Institute The University of Texas at Austin

BMW Wins ÿkoGlobe 2008 Award for Thermoelectric Generator

http://green.autoblog.com/2008/09/25/bmw-wins-koglobe-2008-award-for-thermoelectric-generator/

http://www.greencarcongress.com/2009/10/bmw-outlines-intelligent-heat-management-applications-for-reducing-fuel-consumption-and-co2-new-ther.html#more

Thermoelectric Energy Conversion

ZT Progress and Materials Issues

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

Bed Poudel,^{1,2}* Qing Hao,³* Yi Ma,^{1,2} Yucheng Lan,¹ Austin Minnich,³ Bo Yu,¹ Xiao Yan,¹ Dezhi Wang,¹ Andrew Muto,³ Daryoosh Vashaee,³ Xiaoyuan Chen,³ Junming Liu,⁴ Mildred S. Dresselhaus,⁵ Gang Chen,³† Zhifeng Ren¹†

• *ZT* enhancement in complex or nanostructured bulk materials is caused by lattice thermal conductivity suppression.

•Thallium (TI) doping in PbTe increases $S^2\sigma$ and *ZT*.

•Tellurium and germanium are costly. Thallium is toxic.

• Low-cost, abundant, and environmentally-friendly materials with *ZT* > 1.5 are needed for large-scale deployment of thermoelectric generators.

Thermal Conductivity (к)

Nanowire Model Systems

- At 300 K, phonon wavelength (λ)
 ~1 nm ~ surface roughness (δ)
- Ziman's surface specularity:

$$p = \exp(-16\pi^3\delta^2/\lambda^2) \ge 0$$

• Boundary scattering m.f.p.:

$$l_b = \frac{1+p}{1-p}d \rightarrow d \text{ for } p \rightarrow 0$$

• Effective m.f.p.:

$$l(\omega) = \left(l_U^{-1} + l_i^{-1} + l_b^{-1} \right)^{-1}$$

• Callaway-type model:

$$\kappa_{l} = \sum_{i} \int_{0}^{\omega_{ZBi}} C_{i}(\omega) v_{x,i}(\omega) l_{i}(\omega) d\omega$$
$$\rightarrow \kappa_{diffuse} \text{ when } l_{b} \rightarrow d$$

- Bi₂Te₃ NW Sample 3
- Electrodeposited
- Single crystalline
- Growth direction <110>

Thermal Measurement of Individual NWs

Contact Thermal Resistance and Seebeck Measurements

Mavrokefalos et al., Rev. Sci. Instr. 78, 034901 (2007):

 $V_{23} / V_{14} \rightarrow (T_h' - T_s') / (T_h - T_s)$

 $S \approx V_{14} / (T_h - T_s)$

• Electrical contact was made between the NW and the pre-patterned Pt electrodes via annealing in hydrogen.

Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires

Anastassios Mavrokefalos,¹ Arden L. Moore,¹ Michael T. Pettes,¹ Li Shi,^{1,a)} Wei Wang,² and Xiaoguang Li²

Seebeck Coefficient and Fermi Level (*E_F*)

 Hall measurements cannot be used to obtain carrier concentration

-0.3

-0.4

-0.2

-0.1

 E_F (eV)

0.0

Highly Doped Solution

0.1

0.2

Electron Concentration (*n***) and Mobility (** μ **)**

$$n = \frac{4\pi}{h^3} (2m_e^* k_B T)^{3/2} F_{1/2}(\zeta_e)$$

$$\sigma = ne\mu_e + pe\mu_h$$

$$\rightarrow \mu_e = \sigma / ne$$

• The measured σ can only be fitted with the higher E_{P}

- The mobility of the single-crystal NW 3 is ~19% lower than the bulk value.
- The electron m.f.p. is reduced from 60 nm in bulk to 40 nm in NW 3 because of partially specular electron-surface scattering.

Electronic and Lattice Thermal Conductivity ($\kappa_e \& \kappa_l$)

•For the polycrystalline NW 2, $\kappa < \kappa_{bulk}$ mainly because of κ_e suppression.

• For the single-crystal NW, the obtained κ_l is suppressed by <20% because of the short Umklapp m.f.p. ($l_u \sim 3$ nm), so that *the size effects on* κ_l and μ are similar in the 50-nm diameter Bi₂Te₃ NW.

Thermal Conductivity and *ZT* of CrSi₂ Nanowires

- Phonon m.f.p. in bulk $CrSi_2$ is less than 10 nm < *d*.
- Compared to the hot pressed bulk powder sample, small *ZT* enhancement was found in two NWs of <100 nm diameter mainly because of the slightly suppressed κ without mobility reduction.
- κ_l suppression in a NW is rather small unless $d \le$ the umklapp scattering m.f.p. (l_u) .

Complex Silicide Nanowires of Large Effective Mass

• Numerous phonon modes of low group velocity and enhanced phonon-phonon scattering results in low $\kappa = 2-4$ W/m-K and ZT = 0.7 at 800 K in bulk MnSi_{1.75}.

Phonon-Glass Behavior in MnSi_{1.75} NRs and NWs

• For MnSi_{1.75} NWs and NRs, $\kappa \sim \kappa_{\alpha} = 0.7$ W/m-K calculated with $l = \lambda/2$ and v = speed of sound.

- The group velocity of the numerous optical phonons is much smaller than the speed of sound.
- The m.f.p. of acoustic phonons could be still quite long in bulk $MnSi_{1.75}$, and is reduced by diffuse surface scattering in the nanostructure.

Summary

• It appears to be possible to achieve phonon-glass, electron-crystal behavior in silicide NWs of complex crystals that have a large effective mass and abundant on earth.

• In such NWs, κ_l can be suppressed to κ_{α} via the combination of numerous low-velocity optical phonons with a small fraction of acoustic phonons of suppressed m.f.p.

• While it remains to be verified, the large effective mass can potentially lead to large carrier concentration and low-medium bulk mobility that is not reduced much in a NW, so that the power factor is not reduced as much as κ_l suppression.

Acknowledgement

Current Graduate Students and Post-doc Fellows:

Arden Moore, <u>Jae Hun Seol</u>, Michael Pettes, <u>Yong Lee</u>, <u>JaeHyun Kim</u>, Mir Mohammad Sadeghi, Patrick Jurney

Alumni:

Anastassios Mavrokefalos, Feng Zhou, <u>Choongho Yu</u>, Jianhua Zhou, Sanjoy Saha, Huijun Kong

Collaborations for Nanowire Studies:

Jeremy Higgins, Jeannine Szczech, Song Jin (UW-Madison) Wei Wang, Xiaoguang Li (USTC)

Laura Qi Ye (NASA)

Natalio Mingo (CEA-Grenoble)

Derek Stewart (Cornell)

Heiner Linke, Kimberley Thelander, Jessica, Ann Persson, Linus Fröberg, Lars Samuelson (Lund)

Research Sponsors:

Texas Higher Education Coordinating Board

Power Factor ($S^2\sigma$)

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States

Joseph P. Heremans,^{1,2}* Vladimir Jovovic,¹ Eric S. Toberer,³ Ali Saramat,³ Ken Kurosaki,⁴ Anek Charoenphakdee,⁴ Shinsuke Yamanaka,⁴ G. Jeffrey Snyder³*

25 JULY 2008 VOL 321 SCIENCE

•Thallium (TI) doping in PbTe distorts the density of states, increasing $S^2\sigma$ and ZT.

Ultralow Thermal Conductivity in Disordered, Layered WSe₂ Crystals

Catalin Chiritescu,¹ David G. Cahill,¹* Ngoc Nguyen,² David Johnson,² Arun Bodapati,³ Pawel Keblinski,³ Paul Zschack⁴

- $\kappa_l \ll \kappa_{\alpha}$ has been demonstrated.
- The question is how much κ_l can be lowered without considerable reduction of the charge mobility.

• We use nanowires as model systems to investigate this question because of the simple and well-characterized structure and interface.

Seebeck Coefficient and Fermi Level (*E_F*)

- Hall measurements cannot be used to obtain carrier concentration & mobility in NWs.
- Two-band model: $S = \frac{S_e \sigma_e + S_h \sigma_h}{\sigma_e + \sigma_h}$
- Single conduction band model:

$$S_{e} = -\frac{k_{B}}{e} \left(\frac{(r_{e} + \frac{5}{2})F_{r_{e} + \frac{3}{2}}(\zeta_{e})}{(r_{e} + \frac{3}{2})F_{r_{e} + \frac{1}{2}}(\zeta_{e})} - \zeta_{e} \right)$$

$$\varepsilon = -\frac{E_{F}}{E_{F}}$$

$$\xi_e = \frac{L_F}{k_B T}$$

• Relaxation time:

$$\tau = \tau_0 E^{r_e}$$

 $r_e = -0.5$ for phonon and boundary scattering

Structural & Thermal Characterization of MnSi_{1.75} NWs

- Mn₃₉Si₆₈ nanoribbon (NR)
- c ≈ 17 nm

 \bullet Growth direction perpendicular to {121} planes, or 63° from the c axis

Two-Dimensional Phonons in MnSi_{1.75} NWs?

- If the *c* axis is along a radial direction, $2c < \lambda_c = 2d/n < 2d$:
 - \rightarrow only one or several phonon wavevectors allowed in the *c* direction.
 - \rightarrow modulation in *d* and thus in λ_c can enhance phonon scattering.
 - $\rightarrow \kappa$ is reduced.

Determination of Transport Properties in Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations

Feng Zhou,[†] Jeannine Szczech,[‡] Michael T. Pettes,§ Arden L. Moore,§ Song Jin,[‡] and Li Shi*,[†],§,II

NANO LETTERS 2007 Vol. 7, No. 6 1649–1654

• NW growth direction found to be <0001>

Thermoelectric Energy Conversion Waste Heat Recovery Rollingesistar 2ear-atte diffe aeroby anic Auxiliarie s Mechanical ~1/3 Energy Recuperation of resistance braking energy **Thermoelectric Generator** Exhaust **Heat Source** Waste-Heat Engine **Recuperation of** Heat-Up thermal energy Coolant/Oil ~2/3 of the energy **Heat Sink** contained in the fuel is converted into heat Figure of Merit (ZT) Seebeck **Electrical** coefficient conductivity $ZT \equiv \frac{S^2 \sigma}{T}$ → Thermal conductivity κ_____