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ZT Progress and Materials Issues
• ZT enhancement in complex or p
nanostructured bulk materials is caused 
by lattice thermal conductivity 
suppression. 

•Thallium (Tl) doping in PbTe increases 
S2σ and ZT.
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Year•Tellurium and germanium are costly. Thallium is toxic.

• Low-cost, abundant, and environmentally-friendly materials with ZT > 1.5 are needed for 
large-scale deployment of thermoelectric generators.



Thermal Conductivity (κ)
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• κl << κα has been demonstrated in disordered, layered thin films. 
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• The question is how much κl can be lowered without considerable 
reduction of the charge mobility.



Nanowire Model Systems
• Bi2Te3 NW Sample 3

210

- Electrodeposited
- Single crystalline 
- Growth direction

003 <110> 

[120] Zone Axis

B d tt i f• Boundary scattering m.f.p.:

0  for  
1
1

→→
−
+

= pdd
p
plb

• At 300 K, phonon wavelength (λ)

• Effective m.f.p.:

( ) 1111)(
−−−− ++= biU llll ω

~1 nm ~ surface roughness (δ)

• Ziman’s surface specularity: dlvC iixil
ZBi

∑ ∫= )()()( , ωωωωκ
ω

• Callaway-type model:

0)/16exp( 223 ≥−= λδπp
dlbdiffuse

i

→→  when 
0

,

κ



Thermal Measurement of Individual NWs
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Contact Thermal Resistance and Seebeck Measurements
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Single-crystal NW
• Polycrystalline NW

• Majority of the NW oriented within 
3o along the binary direction

003



Seebeck Coefficient and Fermi Level (EF)

• Hall measurements cannot be 
used to obtain carrier concentration 
& mobility in NWs.& mobility in NWs.



Electron Concentration (n) and Mobility (μ)
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• The measured σ can only be 
fitted with the higher EF

nee /σμ =

fitted with the higher EF.

• The mobility of the single-crystal NW 3 is 
~19% lower than the bulk value.

• The electron m.f.p. is reduced from 60 nm 
in bulk to 40 nm in NW 3 because of 
partially specular electron surface scatteringpartially specular electron-surface scattering.  



Electronic and Lattice Thermal Conductivity (κe & κl)

•For the polycrystalline NW 2,  κ < κbulk
mainly because of κ suppressionmainly because of κe suppression.  

• For the single crystal NW the obtained κ is

•κe calculated 
from the W-F law

• For the single-crystal NW, the obtained κl is 
suppressed by <20% because of the short 
Umklapp m.f.p. (lu~3 nm), so that the size 
ff d i il i h 50effects on κl and μ are similar in the 50-nm 

diameter Bi2Te3 NW.  • Symbols: κl =κ −κe

• Lines: Callaway modelLines: Callaway model



• μ of the NW is close to bulk values along the same• μ of the NW is close to bulk values along the same 

direction.

• Hole effective mass m*= 5m0 large p & low bulk μ0

• σ is high because of a large m* and p

• μ and τ in NWs were dominated by acoustic phonon 

scattering instead of boundary scattering.



Thermal Conductivity and ZT of CrSi2 Nanowires

• Phonon m.f.p. in bulk CrSi2 is less than 10 nm < d.  

• Compared to the hot pressed bulk powder sample small ZT enhancement was• Compared to the hot pressed bulk powder sample, small ZT enhancement was 

found in two NWs of <100 nm diameter mainly because of the slightly suppressed κ

without mobility reductionwithout mobility reduction.

• κl suppression in a NW is rather small unless d ≤ the umklapp scattering m.f.p. (lu).  l pp pp g p ( u)



Complex Silicide Nanowires of Large Effective Mass
A HRTEM MnSi1 75 nanowires C Mn27Si47A HRTEM MnSi1.75 nanowires C
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Selected Area Electron Diffraction

• Large unit cell size (c) along 
the c axis of a MnSi1.75 NW

• Numerous phonon modes of low group velocity and enhanced 
phonon-phonon scattering results in low κ = 2−4 W/m-K and ZT = 0.7 
at 800 K in bulk MnSi1.75.



Phonon-Glass Behavior in MnSi1.75 NRs and NWs

• For MnSi1.75 NWs and NRs, κ ~ κα = 0.7 W/m-K calculated with l = λ/2 and v = speed of 

dsound.

• The  group velocity of the numerous optical phonons is much smaller than the speed of sound. 

Th f f ti h ld b till it l i b lk M Si d i d d b• The m.f.p. of acoustic phonons could be still quite long in bulk MnSi1.75, and is reduced by 

diffuse surface scattering in the nanostructure.



Summary

• It appears to be possible to achieve phonon-glass, electron-crystal 
behavior in silicide NWs of complex crystals that have a large effective 
mass and abundant on earthmass and abundant on earth.

• In such NWs, κl can be suppressed to κα via the combination of 
l l it ti l h ith ll f ti f tinumerous low-velocity optical phonons with a small fraction of acoustic 

phonons of suppressed m.f.p.

• While it remains to be verified, the large effective mass can potentially 
lead to large carrier concentration and low-medium bulk mobility that is not 
reduced much in a NW, so that the power factor is not reduced as much , p
as κl suppression.
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Power Factor (S2σ)
• Electrical conductivity:
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Th lli (Tl) d i i PbT di t t th d it f t t i i S2 d ZT•Thallium (Tl) doping in PbTe distorts the density of states, increasing S2σ and ZT.



Diffuse surface limit for 
random surface roughness:

l d 22

• Monte Carlo phonon 
transport simulation.
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Phonon backscattering at a 
sawtooth surface:

l < d

• κ can be decreased by the sawtooth 
roughness, but is still considerably 
higher than κα.

Johansson et al. Nature Nanotech 4, 50 (2009)



• κl << κα has been demonstrated. 
• The question is how much κl can be lowered without 
considerable reduction of the charge mobility.

• We use nanowires as model systems to investigate this 
question because of the simple and well-characterized 
structure and interface.



Seebeck Coefficient and Fermi Level (EF)
• Hall measurements cannot be

hhee SSS σσ +

Hall measurements cannot be 
used to obtain carrier concentration 
& mobility in NWs.
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Relaxation time:

re = -0.5 
for phonon and boundary scattering



Structural &Thermal Characterization of MnSi1.75 NWs

• Mn Si nanoribbon (NR)• Mn39Si68 nanoribbon (NR)
• c ≈ 17 nm
• Growth direction perpendicular to {121} planes, p p { } p ,
or 63o from the c axis



Two-Dimensional Phonons in MnSi1.75 NWs?

• If the c axis is along a radial direction, 2c <λc = 2d /n < 2d:
only one or several phonon wavevectors allowed in the c direction.

d l ti i d d th i λ h h tt imodulation in d and thus in λc can enhance phonon scattering.
κ is reduced.



50 nm

2 nm

• NW growth direction found to be <0001>

2 nm
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