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MW Wins ykoGlobe 2008 Award for Thermoelectric Generator

Recuperation of
thermalenergy

~2/3 of the energy
contained in the fuel
is converted into heat

http://www.greencarcongress.com/2009/10/bmw-outlines-intelligent-heat-management-applications-
for-reducing-fuel-consumption-and-co2-new-ther.html#more
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Thermoelectric Energy Conversion

Waste Heat Recovery
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ZT Progress and Materials Issues

 ZT enhancement in complex or

ngh'ThermOEIBCt"c Peﬂorma"ce nanostructured bulk materials is caused
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*Tellurium and germanium are costly. Thallium is toxic.

» Low-cost, abundant, and environmentally-friendly materials with ZT > 1.5 are needed for
large-scale deployment of thermoelectric generators.



Thermal Conductivity (x)
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* k; << K, has been demonstrated in disordered, layered thin films.

Polymer * The question is how much x; can be lowered without considerable
Air reduction of the charge mobility.



Nanowire Model Systems

 Bi,Te; NW Sample 3
- Electrodeposited
- Single crystalline
- Growth direction
<110>

« Boundary scattering m.f.p.:

Ib=1+—pd —dforp—0

1-p
» Effective m.f.p.:
2 —1)—
« At 300 K, phonon wavelength (1) (@) = (IU +i ™+l
~1 nm ~ surface roughness (0) » Callaway-type model:
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Thermal Measurement of Individual NWs




Contact Thermal Resistance and Seebeck Measurements

Mavrokefalos et al., Rev. Sci.
Instr. 78, 034901 (2007):

(Th,'Ts’)/ (Th'Ts)

S =V (Th-Ty)

L) J
* Electrical contact was made between Th Th TS Ts To
the NW and the pre-patterned Pt @ \/\ .\/\/\._\/\—'_\/\/\_'—'Q

electrodes via annealing in hydrogen.
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JOURNAL OF APPLIED PHYSICS 105, 104318 (2009)

Thermoelectric and structural characterizations of individual
electrodeposited bismuth telluride nanowires
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S (uV/K)

Seebeck Coefficient and Fermi Level (Ef)
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- Hall measurements cannot be
used to obtain carrier concentration
& mobility in NWs.

300 —

200

-100

-200

-300 ©

[ Two-band Model

100 |

Highly Doped
Solution

E, (eV)

- Near Transition
Solution \
L Measured S = ]
- Single-band Model / .
/
04 -03 -0.2 -01 0.0 0.1 0.2



Electron Concentration (n) and Mobility ()
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Electronic and Lattice Thermal Conductivity (. & x)
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*For the polycrystalline NW 2, k< &
mainly because of x, suppression.

* For the single-crystal NW, the obtained «; IS
suppressed by <20% because of the short
Umklapp m.f.p. (I,~3 nm), so that the size
effects on x; and  are similar in the 50-nm

diameter Bi,Te; NW.



Determination of Transport Properties in

Chromium Disilicide Nanowires via NANO
Combined Thermoelectric and Structural LETTERS
Characterizations 2007
Feng Zhou,'f Jeannine Szczech,* Michael T. Pettes,’ Arden L. Moore,$ Vol. 7, No. 6
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Thermal Conductivity and ZT of CrSi, Nanowires
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found in two NWs of <100 nm diameter mainly because of the slightly suppressed «

without mobility reduction.

* k; suppression in a NW is rather small unless d < the umklapp scattering m.f.p. (I,).



Complex Silicide Nanowires of Large Effective Mass
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Selected Area Electron Diffraction

* Numerous phonon modes of low group velocity and enhanced
phonon-phonon scattering results in low x=2-4 W/m-K and ZT = 0.7
at 800 K in bulk MnSi, .



Phonon-Glass Behavior in MnSi, ;- NRs and NWs
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* For MnSi, .- NWs and NRs, x ~ x, = 0.7 W/m-K calculated with | = 4/2 and v = speed of
sound.

* The group velocity of the numerous optical phonons is much smaller than the speed of sound.
 The m.f.p. of acoustic phonons could be still quite long in bulk MnSi, -, and is reduced by

diffuse surface scattering in the nanostructure.



Summary

* It appears to be possible to achieve phonon-glass, electron-crystal
behavior in silicide NWs of complex crystals that have a large effective
mass and abundant on earth.

* In such NWSs, «; can be suppressed to «, via the combination of
numerous low-velocity optical phonons with a small fraction of acoustic
phonons of suppressed m.f.p.

* While it remains to be verified, the large effective mass can potentially
lead to large carrier concentration and low-medium bulk mobility that is not
reduced much in a NW, so that the power factor is not reduced as much
as x; suppression.
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Power Factor (S%0)

 Electrical conductivity: Conduction
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Efficiency in PbTe by Distortion
of the Electronic Density of States

Joseph P. Heremans,** Vladimir Jovovic,* Eric S. Toberer,® Ali Saramat,® Ken Kurosaki,*
Anek Charﬂenphakdee,4 Shinsuke Yamanaka,® G. Jeffrey Sn},rder3*

25 JULY 2008 VOL 321 SCIENCE
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*Thallium (TI) doping in PbTe distorts the density of states, increasing S2c-and ZT.



Phonon backscattering and thermal conductivity suppression
in sawtooth nanowires  APPLIED PHYSICS LETTERS 93, 083112 (2008)
Arden L. Moore,’ Sanjoy K. Saha,® Ravi S. Prasher,®** and Li Shi*® .
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Ultralow Thermal Conductivity in

Disordered, Layered WSe, Crystals

Catalin Chiritescu,® David G. Cahill,** Ngoc Nguyen, David Johnson,?
Arun Bodapati,® Pawel Keblinski,® Paul Zschack®
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WSe, layers
* k5; << Kk, has been demonstrated.

* The question is how much x; can be lowered without
considerable reduction of the charge mobility.

« We use nanowires as model systems to investigate this
guestion because of the simple and well-characterized
structure and interface.
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Seebeck Coefficient and Fermi Level (Ef)
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Structural &Thermal Characterization of MnSi, ., NWs
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» Growth direction perpendicular to {121} planes, |
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Two-Dimensional Phonons in MnSi, ;- NWs?

- If the c axis is along a radial direction, 2c <4.=2d /n < 2d:
—> only one or several phonon wavevectors allowed in the c direction.
—> modulation in d and thus in 4, can enhance phonon scattering.
- kis reduced.



Determination of Transport Properties in
Chromium Disilicide Nanowires via
Combined Thermoelectric and Structural
Characterizations

Feng Zhou,! Jeannine Szczech,! Michael T. Pettes,S Arden L. Moore,$
Song Jin,F and Li Shi*t$!

* NW growth direction found to be <0001>
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Thermoelectric Energy Conversion

Mechanical
Energy

Thermoelectric Generator

Recuperation of
thermal energy

~2/3 of the energy
contained in the fuel
is converted into heat
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