

Organic-Inorganic Hybrid Materials for IR-Photodetection and Photovoltaics

Nanophotonic Materials Lab Hannam University

Kwang-Sup Lee

Department of Advanced Materials, Hannam University, Daejeon 305-811, Korea

Contents

- Introduction

- Quantum Dot-based Hybrids
 * Enhancing the Photocurrent Density
 * Photopatternable Quantum Dots
- Low Bandgap Polymers
- C60 Derivatives
- Summary

IR Photodetection

Increase detectivity \rightarrow Increase number of applications

Military

Medical

Weather

Astronomy: Infrared Image of the Milky Way

Solar Spectrum

(Nanocrystal Quantum Dots)

PbSe (for IR) CdSe, InP, InP-CdS core-shell (for visible) ZnSe, CdS (for UV)

- Semiconducting characteristics
- Excellent quantum size effects
- Efficient excitonic generation
- Tunable absorption and emission in the UV to IR

Tuning of Spectral Response by Choosing Quantum Dots

Preparation of PbSe Nanocrystals

(PbO + Oleic acid in tri-*n*-octylamine solvent)+ TOP-Se or TBP-Se

Comments: Size and shape control + Surface functionalization of the particles are very important steps.

Comparative Environmental Stabilities of IR QDs and IR Organic Dyes

Excitation - 720 nm Emission - 830 nm.

Normal laboratory environmental storage conditions.

Hybrid Materials for IR Photodetection

QD / Pentacene / PVK Polymeric Nanocomposite

Pentacene

Synthetic Route for Pentacene Precursor

Ali Afzali, et.al, J. Am. Chem. Soc. 2002, 124, 8812.

"Soluble in CHCl₃, CH₂Cl₂"

Prepared by the Diels-Alder reaction between pentacene & N-sulfinylamide in the presence of a catalytic amount of methyltrioxorhenium,

Device Processing for IR Photodetector

Film Composition: PVK 30 wt%, Pentacene precursor 30 wt%, PbSe 40 wt%

Evaluation of Photoconductivity

Keithley source meter

Photocurrent density as a function of applied voltage in devices with the same proportion of PVK: pentacene (3:1) but various amounts of PbSe nanocrystals as indicated in the legend.

Photocurrent density as a function of applied bias (1340 nm) in different devices with varying proportions of PVK and pentacene

The photocurrent increases significantly as the amount of pentacene in the composite increases. The best performance was extracted in devices with equal amounts of PVK and pentacene (having 25 wt % of PbSe QDs). The enhancement in photocurrent, compared to a PVK-PbSe film, is over 8 times.

Comparison of the external quantum efficiency of the composite devices

A maximum external quantum efficiency (EQE) of ~8% at an applied device bias of 5 V is achieved in the composite having equal amounts of PVK and pentacene. This is an improvement of eight times over the PVK:PbSe devices under similar experimental conditions.

QD-Carbon Nanotube / PVK Polymeric Nanocomposite

Carbon Nanotubes Coupled with Quantum Dots

J. M. Haremza et al, Nano Lett. 2, 1253 (2002)

SWCNT-CdSe

S. Banerjee et al, Nano Lett. 2, 195 (2002)

SWCNT-CdS

I. Robel et al, Adv. Mater. 17, 2458 (2005)

QD-SWCNT-Polymer Nanocomposites for Photovoltaics

A variety of QDs active from UV to IR enables us to access a wide part of the solar spectrum

PL spectra of PbSe QDs (solid line) and SWNT-PbSe (dotted line) in tetracholoethylene colloidal suspensions. The concentration of PbSe QDs was the same in both cases.

I-V Characteristics of PbSe QD/PVK and SWNT-PbSe /PVK Device in Dark and under Illumination

Contents

- Introduction

- Quantum Dot-based Hybrids
 * Enhancing the Photocurrent Density
 * Photopatternable Quantum Dots
- Low Bandgap Polymers
- C60 Derivatives
- Summary

Surface Functionalization for Photo-Patternable QDs

Nano Lett., 8, 3262(2008)

Photocurrent Measurements of Photopatternable QDs

Current-voltage curves (a) in the dark or with white light (100 mW/cm²) illumination for a film of *t*-BOC protected and deprotected CdTe nanocrystals (measured at the voltage scan rate is 1 V/s). The channel length is 5 μ m. MSM device structure (b) for photoconductivity measurement.

Polymer Nanocomposite Photovoltaics utilizing CdSe QDs Capped with a Thermally Cleavable Solubilizing Ligand

Appl. Phys. Lett., 94, 133302 (2009)

QD 1

UV: 552nm

PL: 568nm

3-D Lithographic Microfabrication

Localized photochemistry by TPA process

Use of longer radiation wavelengths in TPA process is possible to achieve the better penetration depth in the medium

Polymers

Metals

Ceramics

Nanostructured Vanadium Oxide Electrodes Hybrid Colorimetric/Fluorometric Molecular Probes Smart Microfluidic Channels

Figure (a) shows the photocuring of working acrylate functionalized quantum dots with its layer structure, (b) Shows the synthesis scheme for the acrylate functionalized photopatternable quantum dots.

Photopatterns by Using CdSe/ZnS Core-Shell QDs

Polymer Blocking Layer Effect on In₂S₃/CuInSSe Solar Cell

Low-Bandgap Conjugated Polymers

Low Bandgap Conjugated Copolymers: PFTB & PCTB

I-V Characteristics and Solar Cell Efficiency

Device	Jsc (mA/cm ²)	Voc (V)	FF (%)	Solar Efficiency (%)
P3HT/PCBM (1:0.8)	4.234	0.485	49.68	1.02
PFTB/PCBM (1:4)	3.596	0.881	37.64	1.19
PCTB/PCBM (1:4)	3.782	0.862	38.74	1.26

Development of Efficient NIR Polymers;

Synthesis of the Low bandgap Polymers

Comparison of UV-vis Absorption of Low Bandgap Polymers

UV-vis absorption spectra of the PCPDTBT and PCPDTBBT Polymer films and the polymer-PCBM blend films

Contents

- Introduction

- Quantum Dot-based Hybrids
 * Enhancing the Photocurrent Density
 * Photopatternable Quantum Dots
- Low Bandgap Polymers
- C60 Derivatives
- Summary

C60 Derivatives as Acceptors in Hybrid Bulk Heterojunction Solar Cells

Chem. Phys. Lett. 479, 224 (2009) / Synth. Met. 159, 2539 (2009)

Electron Mobility of New n-Type C60 Derivative (Fu-Hexyl)

Org. Electron, 10, 1028 (2009)

Compounds	$J_{sc}(mA/cm^2)$	$V_{oc}(V)$	FF	E _{ff} (%)
P3HT:PCBM	6.32	0.582	0.65	2.39
P3HT:C60-TH-Hx-3	6.58	0.575	0.64	2.44

Graphic Summary

New fullerene derivatives as electron acceptors in bulk heterojunction solar cells

Coworkers

Profs. Paras N. Prasad & Alex N. Cartwright *Institute for Lasers, Photonics and Biophotonics, Univ. at Buffalo, SUNY, Buffalo, USA*

Prof. Andrzej Graja *Polish Academy of Sciences, Poznan, Poland*

Prof. Tae-Dong Kim Dept. of Advanced Materials, Hannam Univ., Daejeon, Korea

