

Second 1

Sustainable Nanostructured Materials for Energy Storage

Jaephil Cho

Interdisciplinary School of Green Energy and Converging Research Center for Innovative Batter Technologies

Capacity (Energy density)

Flexibility

Fast Charging/Discharging

R & D Target

Contents

Introduction

Application area

Market size: 20 billion

Flexibility

*<u>Angew Chem. Int. Ed</u>. 49, 2146, 2010 <u>Adv. Mater.</u> 22, 415, 2010

Requirements for Electrode Materials

Cathodes

- Electrode density
- Cycle life
- Structural stability (thermal) stability)
- Fast charging capability

40

20

0

10

20

Cui et al. Nano Lett. 8, 3948 (2008)

40

20

60

Anodes

- Electrode density
- Cycle life
- Fast charging capability
- Volume expansion (<15%)</p>
- Side reactions with electrolytes

Nanoclustered Morphology

50

Bulk spinel

40

30

Cycle number

Cathodes

Lithium Rich Layered Materials

<u>Nano Lett.</u> 8, 957(2008) <u>Chem. Commu.</u> 218 (2009)

Cycling Results

Candidates

Н																	Не
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											ΑΙ	Si	Р	S	CI	Ar
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															

Lithium reaction mechanisms

1) Sn, Ge, and Si: $M + xLi^+ + xe^- \leftrightarrow Li_xM$

2)
$$\operatorname{SnO}_2 + 4\operatorname{Li}^+ + 4e^- \rightarrow \operatorname{Sn} + 2\operatorname{Li}_2O(1)$$

 $\operatorname{Sn} + x\operatorname{Li}^+ + xe^- \leftrightarrow \operatorname{Li}_x\operatorname{Sn}(0 \le x \le 4.4)(2)$

- 3) $M^{\parallel}O + 2Li^+ + 2e^- \leftrightarrow Li_2O + M^0$ (3d transition metal oxide)
- 4) $MP_n \leftrightarrow Li_x MP_n$ (Li-intercalation) (1) $MP_n \leftrightarrow M (Li_x M) + Li_x P$ (metallization or metal alloying) (2)

Volume change issue

➢ Particle pulverization and isolation from the Cu collector
→ Rapid capacity fade

Gravimetric vs. Volumetric capacity

Strategies*

Control of particle size (uniform dispersion)

Formation of dimensionally stable coating layer

Artificial formation of "Buffer Zone" so as to alleviate volume change

*<u>Adv. Funct. Mater.</u> 19, 1497, 2009, Feature article <u>Energy & Environ. Sci.</u> 2, 181, 2009, Invited review article

Role of pores

Approaches

<u>*Nano Lett.</u> 8, 3688 (2008)

OD & 3D Ge porous particles*

0D & 3D Ge porous particles – cycling result

3D Porous Si Particles

<u>*Angew. Chem. Int. Ed.</u>, 47, 10151 (2008) (HOT article)

Cycling results

Si nanotubes

*<u>Nano Lett.</u> 9, 3844, 2009

Highlighted in Nature Nanotech., Nature Mater. in Asia & MIT Technical Review

Si nanotubes- Half and full cell tests

Si nanotubes- Ex-situ TEM

Summaries

In the case of the metallic anode nanomaterials, there has been growing researches for reducing the critical volume changes by phase transition during lithium reaction.

>The nanoscaled synthetic methods for bulk with 3D pores, and nanotube structures demonstrated meaningful solutions for the control of the volume expansion.

➢Mostly important, if considering the volumetric energy denisty, bulk with tailored porosity will be the best choice for Li-ion battery anodes.

Acknowledgements

Converging Research Center and WCU programs by MEST & NRF

