2010 The 7th Korea-USA Nano Forum

New Nano-structured Semiconductor Photocatalysts for Photocatalytic Solar Hydrogen Production

Photocatalyst Application

Solar Energy Environmental Conversion **Remediation** - Pollutant Treatment - Water Splitting - Deodorization - H₂S Splitting - Sterilization **Photo-induced reaction** Light energy conversion reaction **Pollutant** Water splitting degradation (organic comp.) $+0_{2}$ Energy Energy $H_2 + O_2$ $CO_2 + H_2O$ \triangle G>0 (up hill) + etc. \triangle G<0 (down hill) H₂O A back reaction The reaction irreversibly easily proceeds. proceeds.

Solar Energy Conversion for Hydrogen Production

Solar Energy

Solar Energy 1.74 x 10⁵ TW

> <u>10,000</u> times of *Current world demands* (~ 0.1% of the Earth's surface : 10% conversion efficiency)

Global need 15.7 TW in 2006

Photocatalytic Water Splitting for Hydrogen Production

Energy Requirement for Overall Water Splitting

$$2 H_2 0 \longrightarrow 2H_2 + 0_2$$

$$\Delta G^{\circ}= 237 \text{kJ/mol}(E^{\circ}= - \Delta G^{\circ}/\text{nF} = -1.23 \text{V})$$

Overpotentials for photo-splitting of water

Reaction type Energy required	eV	
Electron transfer at a cathode	0.2	
Hole transfer at an anode	0.2	
H ₂ overpotential at a cathode	0.1	
0 ₂ overpotential at an anode	0.5	
Band bending for efficient charge separation at an anode	0.2	
Total	1.2	

Solar Spectrum

Band Gap Energy and Band Edge Position of Photocatalysts

Photocatalysts for Water Splitting (UV Light)

- J. C. Escudero *et al.*, *J. Catal.*, **1990**, *123*, 319.

Perovskite Photocatalyst (UV Light)

Water splitting mechanism of K₄Nb₆O₁₇

Perovskite Photocatalyst (UV Light)

V Octoburt		Rate of Gas evolution (µmol/h)	
Х	Catalyst	H ₂	02
0	$Ni - K_4 Nb_6 O_{17}$	403	197
2	$Ni-K_4Ta_2Nb_6O_{17}$	409	198
3	$Ni-K_4Ta_3Nb_6O_{17}$	233	111
4	$Ni-K_4Ta_4Nb_6O_{17}$	31	12
0	N i -Rb ₄ Nb ₆ 0 ₁₇	936	451
2	$Ni-Rb_4Ta_2Nb_4O_{17}$	362	179
3	$Ni-Rb_4Ta_3Nb_4O_{17}$	126	62
4	$Ni-Rb_4Ta_4Nb_4O_{17}$	101	48
6	$Ni-Rb_4Ta_6Nb_4O_{17}$	92	46
6	$Ni-Rb_4Ta_6Nb_4O_{17}$	11	1

0.1 wt% nickel was loaded. Catalyst, 1 g; distilled water, 350 mL; high pressure Hg lamp (400 W); inner irradiation cell (quartz).

- K. Domen et al., Catal. Today, 1996, 28, 175.

Summary of Quantum Efficiency of Overall Water Splitting

Under UV Light

NiO-SrTiO₃

≦~1% (300nm)

Ni-Rb₄Nb₆O₁₇

~ 10% (300nm)

NiO-Ni- $Rb_2La_2Ti_3O_{10}$

~ 30% (300nm)

Photocatalyst for Water Splitting (Visible Light)

CdS : Eg = 2.4eV, λ g = 517nm

Interparticle electron transfer:

- (A) Mediated by the conduction band of TiO_2 ;
- (B) Direct electron transfer to separately supported platinum.

 CdS has ideal band gap & band edge position for water splitting for H₂ production under visible light irradiation.

But it undergoes photocorrosion!

Catalyst	Calcination Temp.(°C) –	H₂yield, µmol
		1h
Pt/TiQ ₂ /SiQ ₂	400	2.0
CdS/SiO ₂	110	
Pt/TiQ ₂ /SiQ ₂	400	3.4
CdS/SiO ₂	300	
Pt/TiQ ₂ /SiQ ₂	400	3.8
CdS/SiO ₂	400	
Pt/TiQ ₂ /SiQ ₂	110	1.3
CdS/SiO ₂	400	
Pt/TiQ ₂ /SiQ ₂	300	2.2
CdS/SiO ₂	400	

^a Reaction conditions: 10 mg of TiO₂/SiO₂; 0.4 wt% Pt (in situ photoplatinization); 10 mL of 1:1 H₂O-MeOH 0.01 M KOH; light source: 450W Xe lamp, 420 nm cut-off filter

- J. M. White et al., J. Phys. Chem., 1987, 91, 3316.

ZnCuS Photocatalyst

$$ZnS \longrightarrow Zn_{0.957}Cu_{0.043}S$$

$$E_{g} = 3.7eV \qquad E_{g} = 2.5eV$$

$$\lambda_{g} = 335nm \qquad \lambda_{g} = 496nm$$

 * Rate of H₂ revolution: 430 μmol/g.cat.hr (0.5M Na₂SO₃)

KRICT

- A. Kudo et al. Catal Letter, 1999, 58, 241.

Rh₂O₃: Cr₂O₃ /(Ga_{1-x}Zn_x)(N_{1-x}O_x) Photocatalyst for Water Splitting

(λ = 420~440 nm; pH=4.5)

Catalyst: 0.3 g, Rh_2O_3 : Cr_2O_3 5 wt.%,

Domen, et. al., Nature, 440, 295 (2006).

CdIn₂S₄ Nanotube and Marigold Nanostructure Photocatalyst

Marigold(aq.): 3~5µm

Nanotube(MeOH): 25nm X 780nm

Cubic spinel nanostructured CdIn₂S₄

Density of states (DOS) for $CdIn_2S_4$ (Calc. Eg = 1.90 eV) VB (S 3p) ; CB (In 5s, 5p major & Cd 5s, 5p)

Advanced Functional Materials, 2006, 16, 1349.

CdIn₂S₄ Nanotube and Marigold Nanostructure Photocatalyst

Diffuse Reflection Spectra's (a) aqueous (b) methanol (c) ethylene glycol (d) polyethylene glycol (5%) mediated $CdIn_2S_4.$

CdIn₂S₄ Photocatalyst for Hydrogen production

Advanced Functional Materials, 2006, 16, 1349.

Nano-CdS Q.D. Photocatalyst in Glass Matrix

Procedure of Preparation for Powder of Q-CdS in glass matrix

Typical photographs of glass matrix, a) host glass b) after crystal growth of Q-CdS

Journal of Material Chemistry, 2007, 17, 4297.

Nano-CdS Q.D. Photocatalyst in Glass Matrix

Journal of Material Chemistry, 2007, 17, 4297.

Octahedrally Coordinated d⁰ Transition Metal Oxide Photocatalysts

Octahedrally Coordinated d⁰ Transition Metal Oxide Photocatalysts

Density of States of TiO₂ by First Principle Calculation

Density of States of ZnBiGaO₂ by First Principle Calculation

 Zn_2GaO_4

ZnBiGaO₄

Photocatalytic H₂ *Production System(Visible)*

Catalyst	Band gap energy (eV)	H ₂ evolution rate ^a (μmol/hr)
ZnBiGaO ₄	2.80(440nm)	3,030
CdBiGaO ₄	2.43(510nm)	2,454

^a Catalyst 0.5g, 250mL(H₂O) + KOH(0.5M), H₂S(2.5mL/min), Xe lamp(450W), light filter(>420nm).

Preparation of Visible Light Photocatalyst by N-doping

Procedure of Preparation for Nb₂Zr₆O_{17-x}N_x

New Visible Light Photocatalyst Synthesis by Molten Salt Method

Conclusions

Present Status

- Quantum efficiency (UV) : ~ 56%(270nm: H_2O)
- Quantum efficiency (Visible) : ~ 5.2%(410nm: H_2O)
- Quantum efficiency (Visible) : ~ 20% (500nm: H₂S)

The Fuel for The Future Future target 3 Quantum efficiency (Visible) : \geq 30% (\leq 600nm) ☆ Hydrogen production rate (1 km²): 16,500Nm³/h Photoreactor Purification Storage **Solar Hydrogen Production System**

