Artificial Photosynthesis – from Light Absorption to Solar Fuels

Devens Gust Department of Chemistry and Biochemistry Arizona State University Tempe, AZ 85287-1604 USA

ASU Center for Bioenergy and Photosynthesis

ASU Center for Bio-Inspired Solar Fuel Production

Best current "technology" for solar energy conversion- photosynthesis

$$CO_2 + H_2O \xrightarrow{\text{light}} (CH_2O) + O_2$$

- The source of most of our current energy – fossil fuels
- 10¹⁴ kg of carbon removed from the atmosphere each year and converted to fuel
- 10²¹ Joules of energy each year

~125 TW (10 times human needs)

Artificial photosynthesis

 Exploiting the physics and chemistry underlying photosynthesis for technological purposes

How does photosynthesis work?

Antennas

Light capture, excitation energy migration, regulation and photoprotection

Reaction centers

Charge separation, electrochemical energy

Dark chemical reactions

Catalysts for H_2O oxidation, CO_2 reduction and biofuel production, (carbohydrate, biodiesel, hydrogen)

4

How does photosynthesis work?

© Sinauer Associates, Inc.

Reaction centers

Bacterial reaction center

N. Woodbury, Department of Chemistry and Biochemistry, Arizona State University

Artificial reaction centers

Kuciauskas, D.; Liddell, P. A.; Lin, S.; Stone, S. G.; Moore, A. L.; Moore, T. A.; Gust, D. *J. Phys. Chem. B* **2000**, *104*, 4307

Light absorption

C-P-C₆₀

Light absorption

C-1P-C₆₀

Porphyrin first excited singlet state

Photoinduced electron transfer

Photoinduced electron transfer

 $C-P^{\bullet+}-C_{60}^{\bullet-}$

Charge-separated state

Charge recombination

Charge shift reaction

 $C-P^{\bullet+}-C_{60}^{\bullet-}$

67 picoseconds

Light energy stored as electrochemical energy

C •+ -P-C₆₀•-

Final charge-separated state

Light energy stored as electrochemical energy

Smirnov, S. N.; Liddell, P. A.; Vlassiouk, I. V.; Teslja, A.; Kuciauskas, D.; Braun, C. L.; Moore, A. L.; Moore, T. A.; Gust, D. *J. Phys. Chem. A*, **2003**, *107*, 7567 Dipole moment ~160 D

Artificial antenna systems

LH2 Photosynthetic antenna

Rhodopseudomonas acidophila

R. Cogdell, N. Isaacs

A funnel-like antenna – RC complex

Phys. Chem. B **2009**, *113*, 7147-7155

Energy and electron transfer

Time constants for photochemical processes (ps)

	porphyrin hexad	d zin	c	porphyrin fullerene
process	free base	hex	ad	heptad -
	2-meTHF	2-meTHF	1,2-DFB	1,2-DFB
step 1	0.4	0.4	0.4 ^d	0.4
step 2	5 - 14	5 - 14	5 - 13	5 - 13
step 3	8	7	7 ^d	7
step 4	4	6	6	6
step 5	5 - 26	4 - 21	2 - 15	2 - 15
step 6		570	230	230
step 7		4800	1500	1500
step 8				3
step 9				230

Both energy transfer to the porphyrins and photoinduced electron transfer are highly efficient.

Regulation and photoprotection

- Sunlight is diffuse, so photosynthesis uses antennas to maximize delivery of excitation energy to reaction centers.
- If the sunlight intensity suddenly increases, photosynthesis is overdriven. Singlet oxygen, reactive radicals, redox intermediates, and other destructive species are produced.
- Photosynthetic organisms have evolved regulatory mechanisms to down-regulate delivery of excitation energy to reaction centers under such conditions. (e.g., "nonphotochemical quenching, NPQ")

Regulation in nanotechnology

- Functional nanoscale systems, including artificial photosynthesis, will need self-regulation and control circuits.
- How can we design photocatalysts or other molecular components that are not only functional, but also adaptive, responding to changes in their environment?

Self-regulation of photoinduced electron transfer by a molecular nonlinear transducer

Straight, S. D.; Kodis, G.; Terazono, Y.; Hambourger, M.; Moore, T. A.; Moore, A. L.; Gust, D. *Nature Nanotechnology* **2008**, *3*, 280

Photochromic control unit

Principle of operation

Principle of operation

Principle of operation

Isomer ratio, and therefore the amount of quenching, is determined by white light intensity and temperature

Operation

Quantum yield of charge separation is reduced from 82% at low light to as low as 27% under bright white light.

The overall yield of charge separation is a non-linear function of white light intensity

Comparison with natural NPQ

Self-regulation in molecular system

Natural regulation in orange trees

Ribeiro, R. V.; Machado, E. C. *Braz. J. Plant Physiol.* **2007**, *19*, 393-411.

Photocatalytic water splitting

W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, T. E. Mallouk, *J. Am. Chem. Soc.*, **2009**, *131*, 926-927

Conclusions

- Photosynthetic principles can guide the design of artificial systems that convert sunlight into useful forms of energy
 - Antenna function
 - Photoinduced charge separation
 - Regulation and photoprotection
 - Production of useful fuels or electricity
- Such systems are in general not yet practical for technological applications – more research is needed

Many thanks to

- Tom Moore, Ana Moore, Tom Mallouk, Sergei Smirnov, Chuck Braun
- Many students and postdocs listed on the slides
- The Department of Energy and National Science Foundation for funding