Multiple Gate CMOS and Beyond

Dept. of EECS, KAIST

Yang-Kyu Choi

Outline

- **1. Ultimate Scaling of MOSFETs**
 - 3nm Nanowire FET
 - 8nm Non-Volatile Memory Device
- **2. Multiple Functions of MOSFETs**

3. Summary

CMOS Evolution Scenario

KAIST

ITRS Roadmap

			· ·
		2006	
L _G (28		
EOT	Bulk SG	1.1	
(nm)	DG		
I _{sd,leak} (μΑ/μm)	Bulk SG	0.15	
	DG		
l _{d,sat} (mA/mm)	Bulk SG	1130	
	DG		

2008	2011	2013	2020
22	16	13	5
0.9	0.5		
	8.0	0.6	0.5
0.2	0.32		
	0.1	0.11	0.11
1570	2490		
	1899	2220	2981

Source: ITRS 2005 roadmap

- Solution exist
- Solution being pursued
- No known solution

All-Around Gate (AAG) FinFET

 To fabricate sub-5nm silicon transistor, <u>All-Around Gate (AAG) FinFET was proposed.</u>

Process Flow of AAG-FinFET

- (100) SOI wafer
- Silicon body thinning
- Fin patterning (dual-resist)
- Sacrificial oxidation
- Gate dielectric (HfO₂)
- Poly-silicon deposition
- Gate patterning (dual-resist)
- Spacer formation
- Source/Drain implantation
- Spike annealing (1000°C)
- Forming gas annealing (450°C)

3nm AAG FinFET: Silicon-Fin

Nano-Oriented Bio-Electronics Lab

3nm AAG FinFET: Gate

ano-Oriented Bio-Electronics Lab

I-V of 3nm AAG FinFET

Large DIBL and SS due to thick EOT

 ITRS requirement: 0.5nm EOT for DG

Fundamental Limit of Scaling

• Device scaling limit (Operating at 300K)

- *Heisenberg*'s uncertainty principle
- Shannon von Neumann Landauer (SNL) expression

$$x_{\min} = \frac{\hbar}{\Delta p} = \frac{\hbar}{\sqrt{2m_c E_{bit}}} = \frac{\hbar}{\sqrt{2m_c k_B T \ln 2}}$$
$$= 1.5nm \quad (T = 300K)$$

Fabricated 3nm all-around gate FinFET is approaching to this fundamental limit.

Nanowire Structure

 Silicon nanowire non-volatile memory structure for ultimate scaling

> Blocking oxide Nitride trap layer Tunneling oxide

8nm Non-Volatile Memory

Omega-shape gate ONO-structure

8nm Si Nanowire NVM

Y.-K. Choi et al., VLSI, 2007

8nm Si Nanowire NVM

8nm Silicon Nanowire NVM with ONO

- 8nm L_G with 7nm W_{NW} using ONO-structure
 - Acceptable electrical performance by omega-gate
 - Wide hysteresis shows the probability of multi-level NVM

8nm Si Nanowire Memory

8nm NVM: V_T window = 2V Program @ +12V/1msec, Erase @-12V/1msec

KAI51

Scaling Limit in NVM

Close to end-point of semiconductor memory

KAIST

Example of Fusion Memory (System in Package)

Principal of SONOS Flash Memory

Principal of Capacitorless DRAM

ano-Oriented Bio-Electronics Lab

Basis of URAM Operation (1)

Multi-Function (URAM) Operation

Family of URAM

mano-uriented Bio-Electronics Lab

Process Flow (1)

- Initial bulk substrate
- Buried n-well implantation
- p-body implantation

SOC Substrate Si Si:C Si substrate Initial bulk substrate Si:C epitaxial growth Si epitaxial growth SOG Substrate Si Si:Ge Si substrate Initial bulk substrate Si:Ge epitaxial growth

Si.Ge epitaxial growth
 Si epitaxial growth

Puntch stop implantation Active fin lithography Photoresist trimming

Fin patterning

HDP oxide deposition **Oxide CMP**

Oxide recess formation

Process Flow (3)

O/N/O formationPoly-Si deposition

• Gate patterning

S/D implantation

Activation

Forming gas annealing

URAM on SOI

KAIST

Cross sectional view of URAMs

 $I_D - V_G$ Characteristics

 Superior device performances are result of the 3D nature. KAIST

$I_D - V_D$ Characteristics (Kink)

P/E in NVM

• P/E sensing windows are acceptable.

Reliability in NVM

Retention Endurance 3 3 Programmed Threshold voltage, $V_T(V)$ Threshold voltage, $V_T(V)$ Programmed ∆V₇~1.9V ∆V₇~2.7V 0 Erased Erased $10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9}$ **Retention time (sec)** $10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8}$ Cycles (#)

Data retention and endurance are acceptable.

Capacitorless 1T-DRAM in SOI

• Proposed SOI URAM exhibits wider sensing current window.

Y.-K. Choi et. al., IEDM 2007

Capacitorless 1T-DRAM in SON

< Excess Hole Concentration >

KAIST

< Measurement Results >

Capacitorless 1T-DRAM works in SON floating substrate.

Capacitorless 1T-DRAM at SOC

• Capacitorless 1T-DRAM works in SOC floating substrate.

Summary

- 3nm MOSFET and 8nm non-volatile memory device were demonstrated.
 - \rightarrow Close to scaling limit.
- Multi-function URAM was demonstrated.
 - \rightarrow Continuously increased density

Built-in Potential for Buried n-well

Built-in potential confines excess holes.

Band-Offset for Si:C & Si:Ge (2)

Double slopes appear in weak accumulation region.

Scaling Issue (Why capacitorless DRAM?)

Cache portion → 50% in 2006 83% in 2008 90% in 2011

Is this memory or μ -processor ?

- Cell capacitance in DRAM > 25fF (non-scalable)
 Cell area (~8F²) is continuously reduced.
- Capacitorless DRAM is a promising candidate for embedded memory.

Soft-Program Issue

GIDL Program Method

G-to-S/D Underlap Structure

G-to-S/D Underlap Structure

G-to-S/D underlap structure mitigates soft-programming.

[J.-W. Han et. al., EDL, May 2009]

Issue and Solution of G-to-S/D Underlap Device Structure

• High-*k* spacer countervails the parasitic series resistance of the G-to-S/D underlap. [J.-W. Han *et. al.*, EDL, May 2009]

KAI51

