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The CMOS Power Crisis



The CMOS Power Crisis
• Due to off‐state leakage, VTH cannot be scaled down 

aggressively.  Thus, the supply voltage (VDD) has not been 
scaled down in proportion to the MOSFET channel length.

CMOS power density has increased with transistor scaling!

Source: P. Packan (Intel), 
2007 IEDM Short Course

VDD

VDD – VTH

VTH Po
w

er
 D

en
si

ty
  (

W
/c

m
2 )

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

0.01 0.1 1
Gate Length (μm)

Passive Power Density

Active Power Density

Source: B. Meyerson (IBM) 
Semico Conf., January 2004

Power Density with CMOS ScalingCMOS Voltage Scaling

3



• Parallelism is the main technique to improve system 
performance under a power budget.
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Minimizing Operation Energy

• Edynamic + Eleakage = αLdCVdd
2 + LdIOFFVddtdelay

• tdelay = LdCVdd/(2ION)

CMOS has a fundamental lower limit in energy per operation, 
due to subthreshold leakage.

CMOS Energy per Operation
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The Need for a New Switch

• When each core operates at the minimum energy, 
increasing performance requires more power.

Today: 
Parallelism 
lowers E/op

Future: Parallelism doesn’t help

CMOS Energy vs. Delay
(normalized)

Delay
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New Switching Devices



MOSFET Subthreshold Swing

• In the subthreshold region (VGS < VTH),

S≥ 60mV/dec at room temperature
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• S must be reduced in order to achieve the desired ION/IOFF
with smaller VDD

n(E)∝exp(‐E/kT)
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Tunnel FET (TFET)

Structure:

Energy‐band
Diagrams:
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Si TFET I‐V Characteristics
W. Y. Choi et al. (Seoul Nat’l U. & UC Berkeley)
IEEE‐EDL vol. 28, pp. 743‐745, 2007
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Energy‐Performance Comparison

• Si TFETs appear 
promising for 
sub‐1GHz 
applications
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TFET Technology Challenges

• Increased ION to expand range of applications
– Advanced semiconductor materials to achieve smaller 

effective Eg

• VTH control

• TFET‐based integrated‐circuit design
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MOSFET‐Inspired Relay

• The mechanical gate is electrostatically actuated by a voltage applied 
between the gate and body electrode, to bring the channel into 
contact with the source and drain electrodes.

ON‐state
|VGB| ≥ VTH

OFF‐state
|VGB| < VTH
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Plan‐View Micrograph

F. Chen et al. (MIT, UCB, UCLA), 2008 ICCAD
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• Ideal switching behavior:
– Zero off‐state leakage

– Abrupt turn‐on 

→ low VTH (and VDD) possible!



Relay Scaling

• Scaling has similar benefits for relays as for MOSFETs.

Pull‐in Voltage with Beam Scaling

• Measured pull‐in voltages 
scale linearly
{W,L,tgap} = {90nm,2.3um,10nm}   

Vpi = 200mV

• Mechanical delay also scales 
linearly (~10ns @ 90nm)
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F. Chen et al. (MIT, UCB, UCLA), 2008 ICCAD



Relay‐Based Circuit Design
• Relays have small RC delay but large mechanical delay

Complete all logic in a single complex (pass transistor) gate
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F. Chen et al. (MIT, UCB, UCLA), 2008 ICCAD

10x reduction

CMOS 
fundamental limit: • A relay adder can be 

~10x more energy 
efficient at the same 
delay as a CMOS adder. 

Energy vs. Delay 
Comparison:
(32‐bit adders,

90nm technology)

Example of 
CMOS to Relay
Logic Mapping:



Relay Technology Challenges

• Surface adhesion force

• Mechanical contact resistance

• Reliability

Relay I-V Characteristic

IDS

VGSVpiVrel

hysteresis due 
to surface force
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Summary



Summary

• Due to subthreshold leakage, CMOS technology has a 
fundamental limit in energy efficiency.

• New switching devices with steeper switching 
behavior are needed to achieve lower energy per 
operation.  
– Examples: tunnel FET, relay

– Note: Such devices may have very different characteristics 
than the MOSFET.  Thus, they will require new circuit and 
system architectures to fully realize their potential energy‐
efficiency (and hence performance) benefits. 
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