Information Processing in the Presence of Variability and Defects of Nanoscale

Sandip Tiwari st222@cornell.edu

Today's information processing systems are designed to be totally predictable, reproducible, and are designed hierarchically to be manageable.

Plenty of room for inefficiencies. What can we do within this model?

Are there other opportunities at the hardware - software wall?

Random and non-random variability and defects

Complexity of scales connecting nanoscale to terascale

S. Tiwari et al., IEEE NMDC (2006) 104_2009_Korea_NSF_Workshop.ppt - Apr 28, 2009

Hierarchy and Data Movement: Energy

-- this is also true for communications

A 16 nm processor!

		Source. W. Dally (2006)	
RoadRunner Supercomputer	Element	Energy	Units
1 Petaflops 6562 Dual-core AMD Opteron chips 12240 Cell chips (used in Sony Playstation 3) ~15 Tera transistors 98 Terabytes of memory	32b integer op	0.35	рJ
	64b floating op	7	рJ
	Instruction exec	210	рJ
	32b 16K RAM read	11	рJ
~800 Terabits	32b across 1mm	5	рJ
2.35 MW of power	32b across 20mm	100	рJ
	32b off chip	320	рJ

Moving data is expensive; LVDS mitigates only partly

Tiwari_04_2009_Korea_NSF_Workshop.ppt - Apr 28, 2009

Computation Problems

- Most computation problems are inexact
 - Speech and Video's
 - Recognition
 - Machine learning
 - Data compression
 - ...
 - Decision making
 - Inexact inputs

Example: The Current Economic Crisis

- Inexact model
- Limited resources for decision making

FFTs, GPUs, ALUs, Compression Engines, Transform Engines, Neurons, Analog, ... in coprocessing with Exact Computing.

2000

PS(68k)-PMMA(33.5k) HCP BCP film on ps-

Energy and Defect Rates

Time evolution afm snapshot of self-assembly front propagation

 $t^{1/4}$

dependence

 $p \propto \exp\left(-\frac{\Delta E}{k_B T}\right)$

500 nm C. Harrison et al., Europhysics Letters (2005) Tiwari_04_2009_Korea_NSF_Workshop.ppt - Apr 28, 2009

Fundamental Limits: Energy per Operation

Large System Robustness

Defects: Configurability Penalty on Power

Using R-fold modular redundancy NAND multiplexing Reconfiguration (using knowledge of faulty devices) Defects place severe constraints

Tiwari_04_2009_Korea_NSF_Workshop.ppt - Apr 28, 2009

Networks: Information Flow and Robustness

In the Nanoscale Limit

limits – memory, new ideas that merge functions and break