
BioBio--FunctionalizedFunctionalized
SurfacesSurfaces



Hard / Soft 
Interfaces

Electronic structure, absorption and reactivity properties are 
tunable 

• Change due to interface correlations
• Ionic multilayers screen fields
• Interactions with Applied Electric Fields 
• Multiple Dielectric Interfaces

Change the behavior of polymers in the vicinity of the hard, 
wet surface



Interfaces: 
Nano Heterogeneity 
Surfaces, Beads, Shells…

• Changes in Species
• Large Changes in Electric Fields 
• Changes in Density 

Natural Place for Chemical Work





Salt Water
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DNA & Protein MicroarraysDNA & Protein Microarrays
are useful for a variety of tasks

• Genetic analysis
• Disease detection
• Synthetic Biology
• Computing



Problems in MicroarraysProblems in Microarrays
Cross platform comparisons

• Controls
• Validation
• Data bases for comparisons

Nearly impossible due changes in physics 
and chemistry at the surface



Central Theoretical Central Theoretical 
Issue:Issue:

Binding (recognition) is different in the 
presence of a surface than in 

homogeneous solution.

The surface determines: 
Polarization fields

Ionic screening layers

Ultimately: Device response



Simulations, TheorySimulations, Theory
and Data Processingand Data Processing

• Simulations at the Atomic Level 
–Detailed, Accurate
–Expensive Time consuming

• Theory
–Approximate Rules of Thumb

• Processing the Image Data
–Must be Fast and Accurate



Forces: Surface and SolutionForces: Surface and Solution
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Simulations or Theories of 
Bio Chips

Set up must include
• Substrate (Au, Si, SiO2 …)
• Electrostatic fields
• Surface modifications
• Spacers (organic)
• Probe and Target Bio (DNA or protein) strands
• Salt and lots of Water



The ChemistryThe Chemistry

Na Cl  .1 to .8 M

Probe
Target



Simulate a simple classical force fieldSimulate a simple classical force field

Model the interactions between atoms
• Bonds - 2 body term

– harmonic, Hooke's law spring

• Angles - 3 body term

• Dihedrals - 4 body term
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Nonbonded Terms
• 2 body terms

• van der Waals (short range) & Coulomb (long range)

• Coulomb interaction consumes > 90% computing time
Ewald Sum electrostatics to mimic condensed phase 

screening
• Periodic Boundary Conditions 
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Electrostatic Forces Dominate Behavior



F = ma    or

With a classical Molecular Mechanics 
potential, V(r)

These potentials have only numerical solutions.  

∆t must be small, 10-15s
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Ewald Fast Multipole Ewald Fast Multipole 
• Insist on deterministic trajectories
• Relative precision ∆Fij<10-6 wrt Ewald
• Very fine grain communications 

overlapping and inverse message pulling
• 40x over optimized Ewald for 100K atoms



Periodic Boundaries for Surfaces: 
Change symmetry

Skew BCs





ImplicationsImplications
• Colloidal behavior affects 

– synthesis / fabrication 
– and binding

• Tilt restricts possible geometries of pairing
• Low fraying consistent with high affinity and 

good specificity at low target concentration
∆G  & ∆∆G



A Simple Model
• Ion permeable, 20 Å sphere over a plane/surface

– 8 bp in aqueous saline solution over a surface
• Linear Poisson-Boltzmann has an 

analytic solution 

h

Poly - Ohshima and Kondo, ‘93
DNA - Vainrub and Pettitt, CPL ’00
Ellipse  - Garrido and Pettitt, CPC, 07





Longer Sequences are possible

True mesoscale models



The shift of the dissociation free energy or 
temperature for an immobilized 8 base pair 

oligonucleotide duplex at 0.01M NaCl as a function of 
the distance from a charged dielectric surface

q=0 or ±
0.36e-/nm2
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Surface at a constant potential for 
a metal coated substrate @ .01 M NaCl 



Response to EResponse to E--fieldsfields
Salt and Substrate Material Effects on 8-bp DNA
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Finite Concentration and CoverageFinite Concentration and Coverage
∇2φ = κ2φ outside the sphere and plane,
∇2φ = κ2φ − (ρ/εε0) inside the sphere,

φ|r =a+ = φ|r =a- ,  r φ|r =a+ = r φ|r =a- on the sphere,
φ|z =0+ = φ|r =0- ,  z φ|z =0+ - r φ|z =0- = -σ/εε0 on the plane.

h

Different from O & K

Vainrub and Pettitt, Biopolymers ’02
ibid, NATO Sci , ’05



Coulomb Blockage Dominates Coulomb Blockage Dominates 
Optimum DNA spacingOptimum DNA spacing

High negative charge 
density repels target 

surface binding

Langmuir

On Chip
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Fit with Experimental IsothermFit with Experimental Isotherm

Accord with experiments:
• Low on-array hybridization efficiency (Guo et al 1994, Shchepinov et al 1995)
• Broadening and down-temperature shift of melting curve (Forman et al 1998, Lu et al 

2002)
• Surface probe density effects (Peterson et al 2001, Steel et al 1998, Watterson 2000) 
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Melting curve temperature and widthMelting curve temperature and width
Analytic wrt surface probe density (coverage)
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Strength and linearity of hybridization signalStrength and linearity of hybridization signal
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Peak of sensitivity also AnalyticPeak of sensitivity also Analytic
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Density Waves at a +Density Waves at a +veve charged Surfacecharged Surface

No simple double layer.
Rich multi-layer structure.

Not Poisson-Boltzmann field!



We Have Strong We Have Strong 
CorrelationsCorrelations

• Concentration is a poor variable
• Activity is required
• Many non mean field 

correlations are important
• Multiple length scales 

competing



To design for To design for 
Affinity and SpecificityAffinity and Specificity

• Use Electric fields 
–Effects of DNA with poly cations

• Use surface effects
–Layered hard materials

• Use more quantitative theories 
–non m.f.



ConclusionConclusion
To control the surfaces we must use cleaner 

environments: 

Micro and nano features for bio chips deserve 
the same standards as the computer chip 

industry

Clean rooms with wet and dry facilities
Bio + Nano
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