What I won’t talk about today

- plasmonics
- mesoscopics
- nanowire materials & devices
- DNA sequencing devices
- molecular electronic transport, IETS
- physics of scaled devices
Current Macromolecular Sensing

Labeled sensing

DNA sequencing, radiotag

DNA array, fluor

ELISA: Indirect fluor

Unlabeled sensing

Surface plasmon resonance

Suspended cantilever

Electrical: ISFET
Nanowire biosensors (unlabeled detection)

ISFETs
detection limits
typically ~ µM

\[\frac{1}{I} \frac{dI}{dQ} \sim \frac{1}{r} \]

(C. Zhou, USC)

10nm diameter GaN NW

Buffer

BSA

PSA

PSA antibody

Linker

PSA

In$_2$O$_3$ NW

Au/Ti

SiO$_2$

Si
Silicon-on-insulator (SOI) CMOS Nanowires

Nature 445, 519 (2007)
p-type accumulation mode (backgate)

\[|\Delta V_G| = 1 \text{V} \]

300K, dry
w=50nm, t=25nm

\[V_G = -40 \text{V} \]

\[V_{SD} = -1 \text{V} \]

\[I_{SD} (\text{A}) \]

\[V_{SD} (\text{V}) \]

Fully depleted; \(n_0 \approx 1 \times 10^{15} \text{ cm}^{-3} \)

\[\mu = 54 \text{ cm}^2/\text{V-s} \]

\[\mu_{\text{max}} = 139 \text{ cm}^2/\text{V-s} \]

\[w = 300 \text{ nm} \]

\[t = 25 \text{ nm} \]

\[\text{Hall} \]

\[\text{Drift} \]

\[\text{Temperature (K)} \]

\[\text{Mobility (cm}^2/\text{V-s)} \]
$1/f$ noise of nanowires

\[
\frac{S_I}{I^2} = \frac{\alpha_H}{f N}
\]

\[
\alpha_H = 1.3 \times 10^{-4}
\]

ITRS
NW Sensitivity Scaling with Size: pH Sensing

Large: $w = 1000$ nm; $t = 80$ nm
Small: $w = 100$ nm; $t = 25$ nm

Nernst potential = 60 mV/pH
Subthreshold slope = 60 mV/decade
∴ max. response is 1 decade/pH
Fluid Considerations

\[J_z = -D \frac{d^2 C_0}{dz^2} + u_z C_0 \]

Nano Lett 5, 803 (2005)

\[C_0 (M) \]

\[\# \text{ Molecules/Min} \]

\[Q (\mu L/min) \]

Microchannel Reservoir
- 0.1
- 8.3
- 3000

Silicon-specific functionalization

Nonspecific functionalization

\(x = \text{microfluidics} \)

Science 293, 1289 (2001)

\(x = \text{mixer (reservoir)} \)

Nature 445, 519 (2007)
Biotin-Avidin & Streptavidin Sensing

- **p-type accumulation mode, biotinylated NW device**
 - Analyte
 - Receptor (biotin)

- **avidin**
 - Positive charge
 - \(\Rightarrow \) current decrease

- **streptavidin**
 - Negative charge
 - \(\Rightarrow \) current increase

- **poly(ethylene glycol) (PEG)-ylated device, quenched avidin controls**

![Graph showing current change with time for different proteins](image)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptavidin</td>
<td></td>
</tr>
<tr>
<td>Quenched S-Av</td>
<td></td>
</tr>
<tr>
<td>PEGylated</td>
<td></td>
</tr>
<tr>
<td>Avidin</td>
<td></td>
</tr>
</tbody>
</table>

1 nM protein in 0.1X PBS (\(\lambda_D \sim 2.2 \text{ nm} \))

Nature, 445, 519 (2007)
Sensitivity: Concentration Dependence

Initial S/N

\[\sim 140 \text{ (@10fM)} \]

⇒ <100 aM limit

\[(< 3 \text{ fg/ml}) \]

(1 aM = 30 molecule per mm\(^3\))

DC, ambient
DNA sensing: criss-cross

- Capture1 is the complementary strand of Probe1;
- Capture2 is the complementary strand of Probe2.
Debye Screening Considerations

\[\lambda_D = \left(\frac{1}{4\pi l_B \sum_i z_i^2 \rho_i} \right)^{1/2} \]

for 0.1 mM PBS, \(\lambda_D \sim 2.2\text{nm} \)

Protein Assay: Antibody-Antigen Specificity

Surface: α-mouse-IgA

100 fM mouse-IgA

100 fM mouse-IgG

PEGylated

100 fM mouse-IgG/IgA in 1.5 mM bicarbonate ($\lambda_D \sim 6.8$ nm)
Unlabeled Cellular Detection

Most cells (including pathogenic) release H^+ in response to specific stimulation.

Nat Rev Immunol 3 (2003) 973
Real-time live cellular response – T-lymphocyte activation

C57BL/6 (B6) mouse splenocytes

anti-CD3 to:
- normal
- inhibited (Genistein)

Real-time measurement of cell immune response dynamics
Transgenic peptide-specific MHC T-cell response

OT-1/2C transgenic murine CD8$^+$ T-cells

- OT-1 reacts to H-2Kb-SIIN, not H-2Kb-SIY
- 2C reacts to H-2Kb-SIY, not H-2Kb-SIIN

Model system for detecting autoimmune diseases and cancer

Summary

- **CMOS-integrable “NWs”**
 - Label-free sensing to aM resolution
 - Enables system-level integration
 - Macromolecular assays

- **Real-time cellular immune response**
 - Applicable to simple, point-of-care diagnostics
 - (all simple DC, ambient)
 - Immune response dynamics

- **Rich area for novel device designs, applications**

- **The challenge:** sensing with physiologic solutions (blood)