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• Some background on light-emitters;

• Nanowire light-emitters;
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• Proposed improvements on nanowire light-

emitters;

• Summary



One of the problems with photonics
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Most important component is hard to integrate and scale



Some progress with the vertical-cavity laser
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Oxide 
Layer

Active

Large numbers of VCSELs can be
manufactured using batch techniques;
but integration with other devices is still 
not a routine process.



Active photonic device scaling: the nanowire 

emitter

Optically pumped ZnO

nanowire emiters with 

diameters from 20 – 150 nm,

and lengths ~10 um.
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Huang, Mao, Feick, Yan,
Wu, Kind, Weber, Russo,
Yang, Science 292 1897 (2001).



A computational model for 

understanding nano-emitters

• Coupled carrier-transport and photon-generation 
rate equations;

• FDTD method for allowed modal solutions and 
field profiles;
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field profiles;

• Include coupling of spontaneous emission into 
the lasing modes (size effect);

• Model should be self-consistent.



The parameter space for  a laser
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Maxwell EQs
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Device equations governing semiconductor lasers
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Coupled  opto-electronic qquations

Carrier Transport Equations (Local)

( )
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ψ -- electrostatic potential

n, p – electron, hole concentrations

Jn, Jp -- current densities

Sm -- Photon density of mth mode

( ) ( )−+ −+−=∇−⋅∇ ADstatic NNnpqψεε 0
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G -- carrier generation rate

R -- carrier recombination rates

D -- diffusion coefficient
µ-- mobility

ψµ ∇−∇= nqnqDJ nnn

r

ψµ ∇−∇−= pqpqDJ ppp

r

Photon Rate Equation (Global)(Global)(Global)(Global)
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Gm -- modal gain calculated from local gain 
τopt -- photon life time 
β -- spontaneous emission factor
Rsp,total -- total spontaneous emission rate



Calculated light output and spectra for a GaN 

nanowire light-emitter
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Calculated output-input characteristics for GaN nanowire 

emitters for various important parameters
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Challenges of small emitters

• Usually insufficient material gain;

• Very lossy (large mirror and diffractive losses);

• Severe mode competition for the little gain;
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• Severe mode competition for the little gain;

• Difficult to integrate with electrical pumping schemes;

• Large surface/volume rations => surface recombination 

problems.



Proposal: use  distributed Bragg reflectors or 
1-D photonic crystals in nanowires

• Distributed Bragg reflectors have been 

successfully used in lasers before;

• Growth of nanowire heterostructures has been 

demonstrated:
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demonstrated:

– scale the heterostructures to DBR mirrror 

pairs;

– calculate properties of DBR structures;

• end mirror properties

• photonic crystal properties



Nanowires and heterostructures

InAs/InP heterostructures
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Bjork, Ohlsson, Sass, Persson, Samuelson
Nano Lett. 2 No. 2,  87-89 (2002).



Proposal for a better  nanowire laser: the 

superlattice photonic crystal structure
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Chen and Towe, Appl. Phys. 

Lett., 87 103111 (2005).



Defect mode spectral location and reflectivity of a 

nanowire superlattice laser cavity
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Chen and Towe, Appl. Phys. 

Lett., 87 103111 (2005).



Calculated output-input characteristics  and emitting 

spectra of  a superlattice nanowire 
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n = 2.55, radius = R 
 n = 2.30, radius = Ri = 0.5R 
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Summary

• Interaction of light with size-dependent effects in 

nanostructures offer device design opportunities for 

next-generation optoelectronics devices;

• Most significant impact will likely be in components that 

Carnegie Mellon
22

• Most significant impact will likely be in components that 

offer ease of integration with other devices;

• Integration with electronics will probably mean having to 

deal with heterogeneous integration technologies. 


