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Outline of presentation
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Goal: Electronics at the 
single-molecule scale
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The Dream of Molecular Transistors

Why don’t we keep on shrinking transistors until they 
are each a single molecule?
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Dream molecular transistors
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Transistors at molecular densities
Suppose in each clock cycle a single electron 
moves from power supply (1V) to ground.

V

Frequency (Hz) 1014 devices/cm2 1013 devices/cm2 1012 devices/cm2 1011 devices/cm2

1012 16,000,000 1,600,000 160,000 16,000

1011 1,600,000 160,000 16,000 1,600

1010 160,000 16,000 1,600 160

109 16,000 1600 160 16
108 1600 160 16 1.6
107 160 16 1.6 0.16
106 16 1.6 0.16 0.016

Power dissipation (Watts/cm2)

ITRS roadmap: 
7nm gate length, 109 logic transistors/cm2 @ 3x1010 Hz for 2016
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The Dream of Molecular Transistors
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New paradigm: Quantum-dot 
Cellular Automata

Revolutionary, not incremental, approach

Beyond transistors – requires rethinking circuits and 
architectures

Use molecules, not as current switches, but as 
structured charge containers.

Represent information with molecular charge 
configuration.

Zuse’s paradigm
• Binary
• Current switch • charge configuration
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Quantum-dot cellular automata
Represent binary 
information by charge 
configuration of cell.

“0”

“null”

“1”
QCA cell

• Dots localize charge

• Two mobile charges

• Tunneling between dots

• Clock signal varies relative
energies of “active” and “null” dots

active

Clock need not separately contact each cell.
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“null”

Quantum-dot cellular automata

Neighboring cells tend to 
align in the same state.

“1”
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Quantum-dot cellular automata

Neighboring cells tend to 
align in the same state.

“1” “1”
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Quantum-dot cellular automata

Neighboring cells tend to 
align in the same state.

“1” “1”

This is the COPY operation.
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QCA cell-cell response function
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Majority Gate

“1”

“1”

“0”

“null”
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Majority Gate

“1”

“1”

“0”

“1”



Center for Nano Science and Technology

Majority Gate

Three input majority gate can function as programmable 2-input 
AND/OR gate.

“A”

“C”

“B”

“out”

M
A
B
C
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QCA single-bit full adder

Hierarchical layout and design are possible.
Simple-12 microprocessor (Kogge & Niemier)

result of SC-HF calculation  
with site model 
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QCA devices exist

“dot” = metal island

electrometers

70-300 mK

Al/AlOx on 
SiO2

Metal-dot QCA implementation

Greg Snider, Alexei Orlov, and Gary Bernstein



Center for Nano Science and Technology

Metal-dot QCA cells and devices

• Majority Gate

M
A
B
C

Amlani, A. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, G. L. Snider, 
Science 284, pp. 289-291 (1999).
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QCA Shift Register
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QCA Shift Register

Gtop

Gbot
electrometers

VIN
+

VIN
–

VCLK1 VCLK2

D1 D4



Center for Nano Science and Technology

Metal-dot QCA devices exist

• Single electron analogue of molecular QCA
• Gates and circuits:

– Wires
– Shift registers
– Fan-out
– Power gain demonstrated
– AND, OR, Majority gates

• Work underway to raise operating temperatures
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Power Gain in QCA Cells
• Power gain is crucial for practical devices 

because some energy is always lost between 
stages.

• Lost energy must be replaced.
– Conventional devices – current from power supply
– QCA devices – from the clock

• Unity power gain means replacing exactly as 
much energy as is lost to environment.

Power gain > 3 has been measured in metal-dot QCA.
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GaAs-AlGaAs QCA cell

• Dots defined by top gates depleting 2DEG

• Direct measurement of cell switching
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Silicon P-dot QCA cell

• Dots defined by implanted phosphorus

• Single-donor creation foreseen

• Direct measurement of cell switching
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Magnetic QCA

• Dots defined by magnetic 
domains

• Room temperature operation
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Molecular QCA

“dot” = metal island
70 mK

Mixed valence compounds

“dot” = redox center

room temperature+

Metal tunnel junctions

Key strategy: use nonbonding orbitals (π or d) to act as dots.
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Experiments on molecular double-dot

Thomas Fehlner et al. 
(Notre Dame chemistry group)
Journal of American Chemical Society,
125:15250, 2003

Ru Ru

Fe Fe

“0” “1”

Fe group and Ru group act as two unequal quantum dots. 

trans-Ru-(dppm)2(C≡CFc)(NCCH2CH2NH2) dication
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Surface attachment and orientation

N

Si Si
3.8 Α

2.4 Α
106o

PHENYL GROUPS
“TOUCHING” SILICON

Molecule is covalent bonded to Si and oriented vertically by “struts.”

Si(111)

molecule Si-N bonds

“struts”
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Applied field equalizes the energy of the two dots

When equalized, capacitance peaks.

applied
potential

Measurement of molecular bistability
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Longer molecular double-dot

Isopotential
surface

HOMO 
orbital
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Double-dot click-clack
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Square 4-dot QCA molecules

0.6 nm
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Imaging molecular double-dot

structure toluene solution Goal:  single-molecule imaging on surfaces

Kandel group

Molecules are pulse-injected from solution into vacuum onto 
a clean, crystalline gold [Au(111)] surface.

Ru-Ru molecule with no surface binding. Not mixed-valence species.
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Ru2 clustering
Some clustering and 
alignment of molecules 
occurs automatically during 
deposition. (50 nm image 
shown.)

We should be able to 
compare isolated molecules 
with those in larger clusters.

Experimental conditions:  0.5 V, 20 pA, 298 K
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Molecular motion

Changing tunneling conditions (from 1.0 V, 20 pA to 1.0 V, 100 pA) increases tip/molecule 
interaction.

We observe a change in orientation for one Ru2 molecule.

This suggests the possibility of using the STM tip for controlled manipulation of these 
molecules on the surface.

Experimental conditions:  250 ×180 Å, 1.0 V, 20 (100) pA, 298 K
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Imaging charge localization

Neutral molecules Mixed-valence molecules

Preliminary results for Fe-Fe fabricated by Claude Lapinte (Rennes)
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Single-atom quantum dots
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Field-clocking of QCA wire: 
shift-register
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Computational wave: majority gate
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Computational wave: adder back-end
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Permuter

Deep pipe-lining at very small scale
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Wider QCA wires

Redundancy results in defect tolerance.
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Molecular circuits and clocking wires

Next: zoom out to dataflow level
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Universal floorplan

Peter Kogge
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QCA design tools

Design tools are starting to enable new systems ideas.

QCADesigner

Konrad Walus
U. British Columbia
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System + Application Architectures

Grounded in device physics & simulation Incorporate clock driven dataflow

A
B

C
D

A
B

Device architecture maps well to many system architectures…

A A’ B B’ C C’

AB

AC

AND Plane OR Plane

AB + BC + AC

BC

Reconfigurable General PurposeSystolic

Good for FIR, FT, 
Matrix multiply, graph 
algorithms, etc.

Mike Niemier
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Summary

• QCA offers possible path to limits of downscaling –
molecular computing.
– General-purpose computing
– New architecture
– Low power dissipation which is essential

• Single-electron metal-dot QCA devices exist.
• First steps in molecular-scale QCA
• Clear path but much research remains to be done.

– Rethinking architecture to match problem
– Chemistry, physics, electrical engineering, computer science

Thanks for your attention.


