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Nanomaterials are complex “chemical systems” that may include:

- surface functional groups

- adsorbed surface species, bound and free ligands

- byproduct phases or structures

- chemical toxicants imbedded within a passivating shell
- unreacted precursors, residual catalysts
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Nanotechnology

Point of contact

Surf between
urface nanomaterial / living receptor
modification & .
2. %
%, K
O/) “
e s 7 .
Purification Consumer “o
use, disposal %y e
80, ”I,- s |
. /@ ) a.."ﬁ.-"i
Synthesis Environmental ¢ [P e Y
fate. transport, [:.'_'.‘L
transformation '

, and exposure 2 ...,f,
Formulation P =

(surfactants, solvents,
imbedding matrices)

Processing <N
stresses 660\
>
R\
Q
N
<<

&

i } Attachment

O
,3{5(\ What material feature(s)
0«6\ triggers the biological response’

Toxicology
Disease
DNA
damage
Persistent
Membrane inflammation
damage
Cellular Bioaccumulation
uptake Translocation
Free radical metabolism
production excretion
Epigenetic
effects
Developmental
effects

Causes :::---------> Effects



Prys

Causes > Effects

What material feature is the trigger
for the biological response? Eecmde

Example: Effect of carbon Class pipetts

nanotubes on electrically active cells
(Lorin Jakubek w/ Prof. Diane lon channel
Lipscombe, Neuroscience, Brown)
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How do SWNTs inhibit
neuronal calcium channels?
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Calcium lon Channel
Inhibition is due to
Mobilized Yttrium!
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Bioavailability of Nickel in

Synthesis: Single-Wall Carbon Nanotubes
Liu, Gurel, Morris, Murray, Zhitkovich, Kane, Hurt

Advanced Materials, 19 2790 (2007)

SWNT or aggregate

shell damage by sonication,
oxidation, abrasion
damage
enhanced
Ni-refease |

adsorption
on carbon

-----
.

. . . . extracellular solutes
biological activity of including Ni-binding ligands

C-imbedded metal
is not obvious

o e - -

Ni-proteins

' _w Ni-enzymes L HIF-fa ‘::::,-‘.:‘
2 Fe-depletion | stabilization ™

\ 2

3
. &@

| e - Nebindng S

i lysosome P to hetero-

i P é\&i\ cytosol Shroratn silencing nucleus
W I’ 1 g

™

BROWN



Cellular Response to CNT Nickel
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Simple Experiment

SWNTs + Cell culture medium

SWNT removal by
centrifugal ultrafiltration

solute profiling and cell culture
in “exposed” media
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Some vitamins are depleted
at CNT doses as low as 10 ug/ml !
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Competitive Folate Pathways
and Biological Implications
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Result: A new “starvation mechanism” driven by
hydrophobic depletion of essential micronutrients

Adsorption of Essential Micronutrients by Carbon Nanotubes and Its Implications for
Nanotoxicity Testing, Guo, Von Dem Bussche, Buechner, Kane, Hurt , SMALL in press
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Purification Example: targeted removal of
bioavailable metal as a detoxification
strategy for nanotubes

Causes --> Effects
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Summary

® Carbon nanotubes can block neuronal calcium ion channels
through release of trace amounts of yttrium!

= Carbon nanotubes can also release toxicologically significant amounts
of nickel — a known carcinogen that acts through epigenetic modification

" Single-wall carbon nanotubes can inhibit cell growth by adsorbing folic acid
and other micronutrients (even without contacting cells!)

" The mechanisms above can be suppressed by proper purification
(purification designed for detoxification) and by surface modification

for hydrophilicity

" There are many other opportunities to make nanomaterials safer by
understanding biomolecular mechanisms and modifying the nanomaterial
features that trigger those mechanisms.
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