

"On January 14, Dr. Judah Folkman, **founder of the field of angiogenesis**, died unexpectedly in Denver, Colo., while en route to Vancouver for one of the thousands of lectures that he gave to scientists around the world. A visionary and scientific pioneer, Dr. Folkman was founder and director of the Vascular Biology Program at Children's Hospital Boston, and a professor of Pediatric Surgery and Cell Biology at Harvard Medical School." *from Bess Andrews*, *Childrens Hospital*

The Angiogenic Sequence

• A cell activated by a **lack of oxygen** releases angiogenic molecules that **attract inflammatory and endothelial cells** and promote their proliferation.

• During their migration, inflammatory cells also secrete molecules that intensify the angiogenic stimuli.

• The endothelial cells that form the blood vessels respond to the angiogenic call by differentiating and by secreting matrix **metalloproteases** (MMP), which digest the blood-vessel walls to enable them to escape and migrate toward the site of the angiogenic stimuli.

Permeabl	ility of A	ngiogenia	c Vessel
A		utoff size vs. effective p	and a second second
	Tumor cell line (n)	Pore cutoff size, nm	Permeability (×10 ⁷ cm/sec)
C	HCa-I (5)* LS174T (6)*† ST-8 (5)* MCa IV (8)* MCa IV (6)* U87 (6)*	380–550 400–600 550–780 1,200–2,000 380–550 7–100	$\begin{array}{c} 2.06 \pm 1.44 \ (1.60-3.99) \\ 1.24 \pm 0.45 \ (0.56-1.67) \\ 3.73 \pm 3.34 \ (1.67-9.28) \\ 2.5 \pm 1.5 \ (1.2-5.1) \\ 1.9 \ \pm 0.5 \ (1.3-2.5) \\ 3.8 \ \pm 1.2 \ (2.4-5.0) \end{array}$
	n, number of a [°] Grown in dorsal [†] Yuan <i>et al.</i> (16). [‡] Grown in crania [§] Yuan <i>et al.</i> (12).	chamber. I window.	y
Hobbs SK	et. al. Proc Na	atl Acad Sci USA	1998;95:4607-4612.

