

The Changing Face of Nanotechnology

M.C. Roco

National Science Foundation (NSF) and U.S. National Nanotechnology initiative (NNI)

Korea-US Nanotechnology Workshop, April 17-18, 2008

Benchmark with experts in over 20 countries

"Nanostructure Science and Technology"

Book Springer, 1999

Nanotechnology

is the *control and restructuring of matter* (measure – manipulate – integrate)

at dimensions of roughly 1 to 100 nanometers (from atomic size to about 100 molecular diameters),

where **new phenomena** enable new applications *(where nanoscale modules are established).*

Nanoscale modules / building bocks

NATURAL THRESHOLD

from individual to collective behavior, at the first level of organization of atoms and molecules

Five Generations of Products and Productive Processes

Timeline for beginning of industrial prototyping and nanotechnology commercialization (2000-2020; 2020-)

Perceived Higher Risks Areas (2000-2020; 2020-)

as a function of the generation of products

1st: Passive nanostructures Ex: Cosmetics (pre-market tests), Pharmaceuticals (incomplete tests for inflammatory effects, etc.), Food industry, Consumer products

~ 2005

~ 2010

4th: Molecular nanosystems_*Ex: Neuromorphic eng., Complex systems, Human-machine interface*

~ 2015-2020 5th: Converging technologies *Ex: Hybrid nano-bio-infomedical-cognitive applic.*

M.C. Roco, 4/18/2008

Higher

Fifth generation - After 2020

NT convergence with bio, info and cogno, and bifurcation of nanosystem architectures

- Guided assembling
- Evolutionary
- Engineered molecular design and guided hierarchical selfassembling
- Robotics based
- Biomimetics . . .
- ? New carrier of information instead of electron charge
- ? Manufacturing by nanomachines
- ? Extending human potential
- ? Collective cognitive capabilities . . .

Fifth generation of nano products:

Four volumes on Convergence 2003, 2006 and 2007 Springer; 2004 NYAS

CONVERGING TECHNOLOGIES FOR IMPROVING HUMAN PERFORMANCE

June 2002

Workshop, Dec. 2001 www.nsf.gov/nano Springer, 2003

November 2006

MANAGING NANO-BIO-INFO-COGNO INNOVATIONS

CONVERGING TECHNOLOGIES IN SOCIETY

MIHAIL C. ROCO AND WILLIAM SIMS BAINBRIDGE (EDS.)

Expanding nanotechnology domains since 2000

2000-2001: nano expanding in almost all disciplines

- *2002-2003*: industry moves behind nano development
- *2003-2004*: medical field sets up new goals
- *2004-2005*: media, NGOs, public, international organizations get involved
- *2006-2007*: new focus on common Earth resources water, food, environment, energy, materials

2007-2008: increased relevance to economic-politic-military-sustainability

WORLDWIDE MARKET INCORPORATING NANOTECNOLOGY (2000-2015)

Estimation made in 2000 after international study in > 20 countries

Reference: Roco and Bainbridge, 2001

Changing research frontier focus

2000-2002

Nanoparticles, nanotubes, quantum dots, coatings

2003-2005

Self- and guided molecular assembling Expands nanobio technology and medicine

2006-2008

Focus on nanodevices and components of nanosystems

> 2008 from COMPONENT to SYSTEM NANOTECHNOLOGY

Challenges for Systems Nanotechnology

- <u>Understanding mechanisms and patterns of</u> <u>system behavior as a function of components,</u> <u>interaction forces and networks at the nanoscale</u>.
 Consider systems with large number of nanocomponents and non-linear interactions
- <u>Tools</u> for measuring, simulation and manufacturing of bio/engineering nanosystems
- Development of a <u>new framework for risk</u> <u>assessment</u> to address emerging functions of nanosystems with potential use in consumer products, medical treatments, food industry and other areas

Integrated circuits that are smaller and faster are possible with microfluidics systems built from or incorporating nanocomponents. *Ferreira, UIUC,* 0328162.

Examples new topics in 2008 Nanodevices and components of nanosystems

- A. Zettl (UCB), J. Rogers (U Illinois):
 nano radio = antenna, filter, amplifier
- IBM: Manipulation with atomic precision
- C. Mirkin (NU), O. Gang (BNL)
 Architectures for new, designed crystals

This image, taken by a transmission electron microscope, shows the carbon-nanotube radio (UCB)

Selfassembling of atoms through DNA strands

- Graphene to build electronic systems
- Informatics for nanosystem design
- Nanolayers for energy conversion
- Water filtration using nano membranes

Nano radio (by Zettl Group, UCSB)

Example 4th generation (in research)

Designing molecules for hierarchical selfassembling

EX: - Biomaterials for human repair: nerves, tissues, wounds (Sam Stupp, NU)

- New nanomachines based on DNA architectures (Ned Seeman, Poly. Inst.)
- Designed molecules for <u>self-assembled porous walls</u> (Virgil Percec, U. PA)
- Self-assembly processing for artificial cells (Matt Tirrell, UCSB)
- Block co-polymers for <u>3-D structures on surfaces</u> (U. Mass, U. Wisconsin)

Changing <u>R&D infrastructure</u> since 2000 Ex: US - NNI Infrastructure

Over 80 nanotechnology research centers, networks, and user facilities linked in a world-class interdisciplinary infrastructure

Over 4500 active research projects
 in 2007 at over 500 universities,
 Government labs, and other
 research institutions in all 50 states
 Ner Centers
 Ner Centers

NMIN
 M.C. Roco, 4/18/2008

100

NNI Networks and User Facilities

- NSF: eight networks with national goals and service
- NIH: four for medical research, cancer and metrology
- DOE: one network with five large facilities
- NASA: network of four centers on convergence
- DOD: three centers on nanoscience
- NIST: instrumentation and manufacturing user facilities
- NIOSH: particle characterization center

Nine Nanoscale Science and Engineering networks with national outreach

TOOLS

N

Network for Computational Nanotechnology (2002-) > 50,000 users/ 2007 National Nanotechnology Infrastructure Network (2003-) 4,500 users/ 2007

Nationwide Impact

TOPICAL

Nanotechnology Center Learning and Teaching (2004-) 1 million students/ 5yr Center for Nanotechnology Informal Science Education (2005-) 100 sites/ 5yr Network for Nanotechnology in Society (2005-) Involve academia, public, industry National Nanomanufacturing Network (2006-) 4 NSETs, DOD centers, and NIST Environmental Implications of Nanotechnology (2008-) with EPA

GENERAL RESEARCH AND EDUCATION

NSEC Network (2001-) 17 research & education centers MRSEC Network (2001-) 6 new research & education centers since 2000

MC Roco, 4/18/2008

A <u>national resource for research, education and user-facility</u> Focus: <u>from atoms to systems</u>; <u>same equations for various applications</u>

National Nanomanufacturing Network Its core: Four Nanomanufacturing NSECs

- Center for Hierarchical Manufacturing (CHM) - U. Mass Amherst/UPR/MHC/Binghamton
- Center for High-Rate Nanomanufacturing (CHN) - Northeastern/U. Mass Lowell/UNH
- Center for Scalable and Integrated Nanomanufacturing (SINAM) - UC Berkeley/UCLA/UCSD/Stanford/UNC Charlotte
- Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS)
 - UIUC/CalTech/NC A&T

Changing national investment

FY 2009 NNI Budget Request - \$1,527 million

MC Roco, 01/10/200

NSF – discovery, innovation and education in Nanoscale Science and Engineering (<u>NSE</u>)

www.nsf.gov/nano, www.nano.gov

FY 2009 Request: \$397M ~1/4 of Federal and ~1/12 of World Investment

- Fundamental research new priorities as compared to 5 years ago
- Establishing the infrastructure over 4,000 active projects;
 24 large centers, 3 user facilities (NNIN, NCN, NNN), multidisc. teams
- Training and education over 10,000 students and teachers/yr

Fiscal Year	NSF		
2000	\$97M		
2001	\$150M	350	
2002	\$199M	300	
2003	\$221M		
2004	\$254M		ISE (\$M)
2005	\$338M		<u>(+)</u>
2006	\$344M		
2007	\$373M		
2008	\$389M		
R 2009	\$397M	2000 2002 2004 2006 2008 M.C	C. Roco, 04/18/2008

ACTIVE Nanoscale Science & Engineering Awards (FY 2001 - 2007)

Per Capita Amount for NEW NS&E Awards FY 2001 – 2007 by State

•PR - \$4.79

State	NEW FY 2001-2007	\$ Per Capita	Rank
MA	\$272,681,724	\$42.95	1
DC	\$21,804,945	\$38.12	2
DE	\$19,893,702	\$25.39	3
RI	\$26,604,737	\$25.38	4
СО	\$96,677,354	\$22.48	5

F	Y01-07	PerC	apita	NEW	Amt

<= 5.466	5.466 - 7.262
7.262 - 8.859	8.859 - 10.63
10.63 - 16.27	16.27 - 42.95

M.C. Roco, 4/18/2008

NNI Accomplishments (1)

- Developed foundational knowledge for control of matter at the nanoscale: about 4,000 active projects in > 500 universities, private sector institutions and gov. labs in all 50 states
- "Created an <u>interdisciplinary nanotechnology community</u>" ¹
- <u>R&D / Innovation Results</u>: With ~25% of global government investments, the U.S. accounts worldwide for
 - ~ 50% of highly cited papers,
 - ~ 60% of USPTO patents², and
 - ~ 70% of startups³ in nanotech.
 - Over 2,000 U.S. nanotech companies in 2006;
 - ~ \$60B products incorporating essential nano components

Infrastructure:

over **80 new** large nanotechnology research centers, networks and user facilities; five large networks of user facilities

(¹) NSF Committee of Visitors; (²) Journal of Nanoparticle Research, 2006; (³) NanoBusiness Alliance, 2006

NNI Accomplishments (2)

- <u>Partnerships</u>: with industry (Consultative Boards for Advancing Nanotechnology - CBAN), regional alliances (25), international (over 30 countries), numerous professional societies
- Societal implications and applications -

since 2000, about 15% of NSF / NNI budget has relevance to environmental health, and safety, and other societal and educational concerns; NNI estimates ~ \$100 million in FY 2008 (primary/secondary)

Nanotechnology education and outreach -

impacting over **10,000 graduate students and teachers** in 2007; expanded to undergraduate and high schools, and outreach; create national networks for formal and informal education

Global outreach:

The U.S. NNI has catalyzed global activities in nanotechnology and served as a stimulus for other programs.

Industry-academe-government <u>R&D partnerships</u> for common goals

- Increased role of industry in funding nanotechnology R&D ; changes in gov. funding
- Special role of local governments for infrastructure, education and small business
- Global partnerships for nanotechnology knowledge, markets and organizations
- Cross-industry R&D consortia

NNI-Industry Consultative Boards for Advancing Nanotech

Key for development of nanotechnology, Reciprocal gains

□ NNI-Electronic Industry (SIA/SRC lead), October 2003 -

Collaborative activities in key R&D areas 5 working groups, Periodical joint actions and reports NSF-SRC agreement for joint funding; other joint funding

NNI-Chemical Industry (CCR lead)

Joint road map for nanomaterials R&D; Report in 2004 2 working groups, including on EHS Use of NNI R&D results, and identify R&D opportunities

NNI – Organizations and business (IRI lead), 2004-

Joint activities in R&D technology management 2 working groups (nanotech in industry, EHS) Exchange information, use NNI results, support new topics

NNI-Biotechnology (BIO lead), October 2004-

Collaborative activities in key R&D areas 2 working groups, R&D collaboration and EHS; joint funding

Changing international context since 2000

~ 2000: Focus on discovery , 'wait & see' if applied

> 2005: Nano as a technological, economical and strategic advantage for nations and large businesses Expanding open-source horizontal growth communication governance

Context – Nanotechnology in the World National government investments 1997-2007 (estimation NSF)

Growing nanotechnology R&D investment - \$12.6 billion in 2006

Source: Lux Research

M.C. Roco, 4/18/2008

Nanotechnology research publications Top five countries in 2006: USA, China, Japan, Germany, France using "Title-claims" search in SCI database for nanotechnology by keywords (using intelligent search engine, update J. Nanoparticle Research, 2004, 6 (4))

Highly cited nanotechnology related papers published in Science, Nature and PNAS

using "Title-abstract" search in SCI database for nanotechnology by keywords (using intelligent search engine, update J. Nanoparticle Research, 2004, 6(4))

NSE patents at USPTO by country group Assignee country group analysis by year, 1976-2006 ("title-claims" search)

	United		Europoon	
Veer			European	Others
Year	States	Japan	Group	Others
1976	30	3	3	6
1977	53	2	3	3
1978	58	3	9	3
1979	26	2	7	3
1980	50	3	9	0
1981	61	1	10	3
1982	51	1	13	1
1983	73	1	15	4
1984	93	4	8	0
1985	97	2	16	1
1986	100	6	11	1
1987	132	12	11	0
1988	124	10	10	6
1989	162	21	28	4
1990	164	17	28	7
1991	204	14	28	9
1992	256	31	26	19
1993	244	36	20	18
1994	227	51	28	10
1995	302	57	33	36
1996	325	52	40	27
1997	393	62	73	25
1998	486	65	103	56
1999	548	75	96	85
2000	612	81	122	68
2001	818	84	147	112
2002	926	102	168	144
2003	1103	143	182	207
2004	1300	172	203	257
2005	1155	160	198	245
2006	1488	212	214	298
Total	11661	1485	1862	1658

M.C. Roco, 4/18/2008

U.S. International partnerships for Nanotechnology

- Nanotechnology included in bilateral (e.g. U.S.- Japan, EU, India, etc.), and international organizations (e.g. OECD, APEC, etc.) <u>S&T agreements</u>
- Typical NSF activities
 - Bottom-up by individual partnerships in research
 - Periodical NanoForums (annual); other workshops
 - Using networks: NNIN / NCN and partner networks / facilities
 - Young scientists exchange programs
- Areas and modes of increased collaboration:
 - fundamental knowledge (precompetitive) by twinning and networking
 - education by visits, int. courses, books, int. accreditation, study institutes
 - broad societal implications: health, environment, energy, water filtration, ethics exchanges
 - contribute to international S&T "grand challenges"
 - industry partnerships, precompetitive nanotechnology platforms

Changing <u>public perception</u> and governance since 2000

Before 2000: Is anything special at nanoscale? Is nanotechnology important? When the first products?

2000-2003: Are there self-duplicating nano-bots?

www.irgc.org

> 2003: What are the risks of "long-term / catastrophic environmental and health events" of nanoparticles?

> 2005: Nanotechnology <u>can help sustainable management</u> of global resources (water, energy, ..) <u>Concern on using nanotechnology in food</u>, others

NANOTECHNOLOGY GOVERNANCE OVERVIEW

Core Governance Process

(Long-term view, transforming, horizontal/vertical, inclusive, priority on education, addressing societal dimensions, risk governance)

> R&D Organizations (Academe, industry, gov.)

Implementation Network (Regulators, business, NGOs, media, public)

Social Climate (Perceived authority of science, civil involvement)

National Political Context

International Interactions

Reference: "NNI: Past, Present Future", Handbook of Nanoscience, Eng. and Techn., MC Roco., Taylor and Francis, 2007

NT Governance and Risk Governance

NANOTECHNOLOCA sampling of NSET Subcommittee publications INITIATIVE for second strategic plan (2006-2010)

IWGN Workshop Report:

Nanotechnology Research Directions

Vision for Nanotechnology in the Next Decade

M.C. Roco, R.S. Williams and P. Alivisatos

Kluwer Academic Publishers

Inclusive: industry, academe, government

Participants in the National Nanotechnology Initiative

Overview of NNI EHS funding in 2006

- \$68 million funding for 246 nanotechnology-related EHS research projects at seven NNI member agencies
- Consensus among NEHI Working Group that instrumentation, metrology, and analytical methods category is cross-cutting and generally a high priority

NSF Investment in Societal Dimensions of NT Of FY 2008 NNI / NSF of \$390 M, \$63 M or 16.2% is for SI, and \$29.2 M (7.5%) for nano EHS

New NSEC in 2008: Environmental Implications of Nanotechnology (NSF, EPA)

Five possibilities for global nanotechnology governance

- 1. <u>Establish models for the global self-regulating ecosystem</u> to enhance discovery, education, innovation, nanoinformatics and commercialization
- 2. <u>Create and leverage S&T nanotech platforms</u> for new products in areas of highest societal interest
- 3. Develop NT for *common resources and EHS requirements*
- 4. Support <u>global communication and international</u> <u>partnerships</u>, facilitated by international organizations
- 5. Commitment to *long-term, priority driven, global view* using scenarios and anticipatory measures

Reference: "Global Governance of Converging Technologies", MC Roco, J. Nanoparticle Research, 2008, **10** 11-29 M.C. Roco, 4/18/2008