Label-free NanoBio Chemical Imaging of Cells and Tissues for New Bio-medical Applications

DaeWon Moon

Nano-Bio Fusion Research Center

Korea Research Institute of Standards and Science (KRISS)

Collaborators: J.Y. Lee, E.S. Lee, T.G. Lee, H.K. Sohn, E.S. Lee, J.E. Gil, W. JeGal, S.H. Kim, (KRISS)

J.H. Chung (SNU), J.E. Park (Samsung Medical), Ann Plant (NIST)

Funding: MOST, MOCIE, KRISS,

Outline: Our strategy of nano-bio fusion

Present status of nanobio imaging methodology at KRISS

A case report on Atherosclerosis with cardiovascular lipid, cell adhesion,

and collagen ECM imaging

Visions in the near future

How to utilize NT to solve Biomedical Issues through noble methodologies

1948 First Transistor

Future 15 years Non-classical CMOS

Tomorrow

New Materials

Strain **Enhanced Mobility**

STM/AFM, TEM/SEM, XRD, PES/AES, SIMS, RBS/MEIS, Raman, ALD, QD, FIB,

CMOS pMOS **FINFET**

Beyond CMOS

Molecular Switches ? **Nanowire Transistor?**

Nano-Bio Fusion

Solving Bio Issues with NT High throughput Noble analysis & manipulation

Analysis Demands from Bio-Medical R&D

: in-vivo/in-vitro, biochemical imaging, dynamics sensitivity & selectivity, general methodology

Label-free single cells/tissue biochemical imaging for medical & pharmaceutical applications

Label-free Single Cells/Tissue Chemical Imaging R&D at KRISS

Non-linear Optics:

CARS microscopy

- 3D dynamic biochemical imaging

Polarized Microscopy:

SPR imaging

- Cell membrane interface

Single Cells
Tissue
Biochemical
Imaging

Electrochemical AFM:

Scanning ion conductance microscope (SICM)

- Ion channel monitoring

Bio-molecular mass imaging SIMS/MALDI imaging

- ex-situ, molecular information

17.6

CARS (Coherent Anti-Stokes Raman Scattering)

- Label-free biochemical imaging
 - no biological disturbance
- high sensitivity (x> 10⁴ Raman)
- ## high spatial resolution (300 nm)
- 3D dynamic imaging
 - in-vivo/in-vitro environment

CARS Microscope at KRISS

1064 nm Modelocked ps laser

750 - 960 nm NIR synchronously pumped ps OPO

Laser beam/pulse diagnostics and overlap control

Dichroic beam coupling and signal decoupling

Non-descan CARS signal detection Optics

Relay optics and optimal microscope objective

Galvano-mirror laser scan inverted optical microscope

CARS Excitation Source

Stokes Laser Pump/Probe Laser

1.5 W @ 1064 nm fixed 2 W @ 725 – 960 nm

Rep. Rate

76 MHz

Pulse Width Bandwidth

7 ps

 $0.38 \text{ nm} / 6 - 7 \text{ cm}^{-1}$

Raman shift

1500 – 3500 cm⁻¹

coverage

~ 100 mW in total

Sample Irradiation

Image Acquisition

Imaging Area

Pixels

1024 x 1024

Frame Rate

Z- section Range

500 μm

Z- section Step

 $0.1 \mu m$

Spatial Resolution

+ Multiplex Raman capability: 200 cm⁻¹~ 1500

cm⁻¹

Real Time CARS images of an alive Hela Cell

Aliphatic C-H @ Δ = 2837 cm⁻¹

Dynamic Imaging of Vesicles

Depth-Resolved Images of an unstained HeLa Cell

Tissues

Skin

Stratum Corneum

Atherosclerosis

Single Cells

Focal Adhesion Fat Liver Tissue & Migration

Stem Cell Differentiation

Hyaloid Vessel

Retinal Tissue

μ-CARS
Potential

HCV-LD Collocalization

From Cellular basic studies to Medical interests in Atherosclerosis

lipid uptake by macrophages & its differentiation to foam cells (CARS)

cell-cell, cell-ECM adhesion & migration (SPR, SIMS, SICM)

imaging plaques and its stabilization (CARS & SIMS)

US, CT, MRI, PET

CARS images for lipid vesicle uptake processes in the differentiation of human monocytes (THP-1) to macrophages

PMA in 10% serum media

duration: 2 hours

CARS spectra for biochemical characterization of lipids from a mouse atheroma tissue

ex vivo Atherosclerosis Cardiovascular CARS Imaging

Cut-Away Side View

Cardiovascular Imaging

- in vivo US/SPECT/PET/NIR:
 - Agents required
 - Low resolution
- ex vivo Biopsy of atheroma tissue :
 - Cryosection
 - Foam cell staining with oil red-O dye

3D Reconstruction of

- Collaboration with Samsung Medical Center

Foam cell differentiation/ Atherosclerosis Diagnosis

Atherosclerosis tissue analysis with multiplex CARS

degree of oxidation/saturation of lipids for plaque stabilization analysis?

Vision of CARS Laser Microscopy

in-vivo Medical and/or Animal model Imaging Endoscopy

Animal Model Imaging

Complementary Use of CARS and SIMS/MALDI imaging

CARS

- : overview of biochemical imaging
- : in-vitro/in-vivo dynamics
- : poor sensitivity and selectivity

Mass Spectrometry (laser/ion beam)

- : molecular specificity
- : high sensitivity (?)
- : high contents biochemical information
- : ex-situ, no dynamics

Lipid structure change

C-C skeletal mode @ (~1100 cm⁻¹)

Mueller et al. JPC B (2002).

Secondary Ion Mass Spectrometry (SIMS)

- : unique for semiconductor dopant analysis
- Can SIMS be useful for biochemical imaging of tissues?
 Can it beat traditional staining optical microscopy & bio-SEM/TEM?

SIMS studies on Photoaging Effects of Skin by UV irradiation

25 keV Bi₃⁺ imaging after C₆₀⁺⁺ cleaning:

(a)	Amino Acid				
	CH ₄ N(Gly) 30.03	C ₄ H ₆ N(Pro) 68.05	C ₄ H ₈ N(Pro) 70.07	C ₄ H ₈ NO (OH-Pro) 86.06	Total ion image
Control	A words			Q TO SE	
UV 24h					
UV 48h					
UV 72h					

(collaborations with SNU Medical School, Dermatology, J.H. Chung)

Is he happy? Maybe, No for proteins, Yes for lipids. Good for CV imaging Is he excited? No. Why??? >> insufficient molecular ions

Complementary use of SIMS & MALDI imaging of tissues with matrix controls

Surface Plasmon Resonance for cell adhesion & migration imaging

SPR applications

quantitative analysis of biomolecules on surface

- biomolecule adsorption dynamics
- antibody-antigen, DNA-DNA interactions

A10 SMC on collagen

HUVEC on fibronectin

The Effect of Flow Rate to A10 SMC Adhesion on Collagen

SPR dynamic imaging of HUVEC adhesion on fibronectin & the Shear Stress Effect

no shear stress

1.2 Pa shear stress

Scanning Ion Conductance Microscope (SICM)

Sample

- · measurement of cells alive in solution
- cell membrane electrochemical mapping
- ~10 nm resolution, elemental specificity
- single ion channel localization and monitoring

Functional localization of K_{ATP} Channels

Y. Korchev Imperial College

SICM imaging of Collagen ECM morphology in solution

300ug 1 hr incubation

25um x 25 um

SICM at KRISS

AFM 25um x 25um

Final Vision:

- 1) Understanding & monitoring atherosclerosis from the subcellular level to the *in-vivo* tissue level
- 2) by in-vitro/in-vivo label free biochemical imaging tools
- 3) For medical imaging diagnostics and/or animal imaging for pre-clinical screening

SICM image of collagen fibers

SPR image of **HUVEC on fibronectin**

SIMS lipid choline image of a skin tissue

CARS lipid image of foam cells in a blood vessel tissue

Conclusions

- 1. Label-free tools such as CARS, bio-SIMS, SPR, SICM can be used as noble and complementary tools in biochemical imaging of single cells/tissues for cell biology and medical diagnostics.
- 2. If it works nicely for atherosclerosis, it can be extended to study other diseases and to understanding EHS issues of nanomaterials for improvement of the quality of life.
- 3. To tackle these issues, global collaborations are mandatory and beneficial to all of us.

Why not between Korea and USA!