

Innovation for Our Energy Future

Metal Oxide Nanoparticles for Improved Electrochromic and Lithium-Ion Battery Technologies

Se-Hee Lee

Supported by: NREL's Laboratory Directed Research and Development Program

Innovation for Our Energy Future

Metal-oxide Nanorods and Particles

Crystalline WO₃ Nanorods

- Metal-oxides have a host of applications including electrochromic (EC) windows and high-energy-density Li⁺ ion batteries.
- Both rely on Li⁺ and H⁺ insertion.
- Kinetics of the insertion reaction is limited by solid-state diffusion of the ions.
- Time constant determined by diffusion coefficient (crystal structure) and length of diffusion path (microstructure).

$$l \propto \sqrt{Dt}$$

• Designing a crystalline nanoparticle with a small radius is key to a material with fast insertion kinetics and superior overall performance.

Hot-Wire Chemical Vapor Deposition (HWCVD) for the Synthesis of Metal Oxide Nanoparticles

• This technique has also been employed for the production of carbon nanotubes.

SWNTs: A.C. Dillon, et al Appl. Phys. Lett. 81 (2002) 4061 and MWNTs: A.C. Dillon, et al. NanoLetters 3(2003) 1425.

HWCVD Production of Tungsten-oxide Nanostructures

Synthesis at 150 torr 4% O_2 in Ar, filament temperature ~ 2000 °C. Nanoparticles are observed at high density with the furnace at either 300 or 600 °C. Slightly larger particles observed at higher temperature.

A.H. Mahan, et al., Chem. Phys. Lett. 413 (2005) 88.

Electrochromic performance comparison

Higher charge insertion than the state-of-the-art amorphous films with similar coloration efficiency

As anticipated these nanoparticle crystalline films are much more stable than state-of-the-art amorphous films!

S.-H. Lee, et al. Advanced Materials 18, 763 (2006)

Comparison of the different battery technologies

Operating Principles

After J.-M. Tarascon & M. Armand, Nature 414, 359 (2001)

Voltage versus Capacity for Positive and Negative Electrode Materials

After J.-M. Tarascon & M. Armand, Nature 414, 359 (2001)

Transition-metal Oxides as Negative-Electrode Materials

$$CoO + 2Li^{+} + 2e^{-} \rightleftharpoons Li_{2}O + Co$$
$$2Li \rightleftharpoons 2Li^{+} + 2e^{-}$$
$$CoO + 2Li \rightleftharpoons_{2}^{1}Li_{2}O + Co$$

After P. Poizot et al., Nature 407, 496 (2000)

Electrophoresis for Creating MoO_x Nanostructured Anodes

Starting Material

TEM image of nanospheroids synthesized in a static argon and 4 % oxygen at a pressure of 75 Torr, furnace being maintained at 300 ^OC.

Porous High Surface Area Anode

SEM image of the film electrode synthesized using electrophoretic deposition technique.

XRD analysis of MoO_x Nanoparticles

Raman Spectroscopy of as-synthesized nanostructures

 \mathbf{O}

🔘 Mo

NREL National Renewable Energy Laboratory

Innovation for Our Energy Future

A negative electrode fabricated with MoO_3 crystalline nanoparticles showed a reversible capacity of approximately 630 mAh/g.

The state-of-the-art graphite anodes employed in commercial lithium batteries have a reversible capacity of approximately 350 mAh/g.

C-rate is defined as one full discharge in 1 hour.

Cycling Stability of MoO₃ Electrodes

Excellent Rate Capability of MoO₃ Nanoparticles

Possible Mechanism...

$MoO_3 + 4.3(Li+ + e^-) \rightarrow 0.5(Li_2O) + Li_{3.3}MoO_{2.5}$

Why do MoO₃ nanoparticle electrodes exhibit a Stable Cycling?

- Small particle size to begin with
- Plenty of pores can accommodate volume changes during cycling

Li-intercalated MoO₃ nanoparticle

MoO₃ Amorphization (DFT-MD) by Lithium Insertion

1 frame = 10 femto second

Density functional theory Molecular dynamics Using **SIESTA** 3 pico seconds @ 400 K

First-principles energetics of the Li intercalated MoO₃ nanoparticle

Innovation for Our Energy Future

Summary

- Hot-wire chemical vapor deposition has been employed for the economical controlled growth of metal-oxide nanostructures at high density.
- The tungsten oxide nanoparticle films exhibit excellent cycling stability in 1 M sulfuric acid in which amorphous tungsten oxide films suffer high dissolution problems.
- Molybdenum-oxide nanoparticles have been employed as the negative electrode in Li⁺ batteries. The dramatically improved capacity and rate capability could possibly make these materials suitable for the next generation of hybrid electric vehicles.
- Preliminary DFT-MD calculation clearly illustrates an initial irreversible amorphization process and reveals a mechanism for the unanticipated reversible capacity in the MoO_3 nanoparticle anode.

R. Deshpande, P.A. Parilla, K.M. Jones, E. Whitney, Y.H. Kim, S. Zhang, A.H. Mahan, and A.C. Dillon