ENERGY NANOTECHNOLOGY

--- A Few Examples

Gang Chen

Nanoengineering Group
Rohsenow Heat and Mass Transfer Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

Email: gchen2@mit.edu

http://web.mit.edu/nanoengineering

Thermal-Electrical Energy Conversion

Grand Challenges: Efficiency and cost effective mass production

Nano for Energy

- Increased surface area
- Interface and size effects

Phonon and Electron Engineering for Thermoelectric Materials

Thermoelectric Devices

Nondimensional Figure of Merit

GPHS Radioisotope Thermoelectric Generator

State-of-the-Art in Thermoelectrics

PbTe/PbSeTe	Nano	Bulk
S ² σ (μW/cmK ²)	32	28
k (W/mK)	0.6	2.5
ZT (T=300K)	1.6	0.3
Harman et al.,	Science,	2003

Bi ₂ Te ₃ /Sb ₂ Te ₃	Nano	Bulk
S ² σ (μW/cmK ²)	40	50.9
k (W/mK)	0.6	1.45
ZT (T=300K)	2.4	1.0

Venkatasubramanian et al., Nature, 2002.

Heat Conduction Mechanisms

A New Crystal?

Inhomogeneous Multilayers?

Heat Conduction Mechanisms in Superlattices

Major Conclusions:

- Ideal superlattices do not cut off all phonons due to pass-bands
- Individual interface reflection is more effective
- Diffuse phonon interface scattering is crucial

Coherent Structures Are Not Necessary, Nor Optimal!

Photon Engineering: Thermophovoltaics

Thermophotovoltaics

Heat Source

Filter

Photovoltaic Cells

Midnight Sun® Stove 100 W of electricity 25,000 BTU/hour of heat

- Frequency Selective Emitter
- Frequency Selective Filters
- Photon Recycling Structures
- Evanescent Wave Structures
- High Efficiency PV Cells

Surface Waves and Near Surface Energy Density

High Energy Density, Monochromatic EM Fields Exists Near Surfaces When ε is Equal but of Opposite Signs. But They Are Non-Emitting!

Near Field Energy Conversion

Coupled Conduction and Radiation Nonequilibrium Thermoelectric Devices

Nonequilibrium Transport

Conventional TE Cooler

Conventional Micro TE Cooler

Proposed Nonequilibrium Thermoelectric Devices

- Explore nonequilibrium between electrons and phonons
- couple the cooling target with thermoelectric element without direct lattice contact

$$ZT = \frac{\sigma S^2 T}{k_e + \mathbf{k}_n}$$

Surface Plasmon Coupling of Electrons

Model Based on Fluctuation-Dissipation Theorem

Three orders of magnitude increase in energy transfer flux due to surface plasmon resonance

Surface-Plasmon Enabled Nonequilibrium Thermoelectric Refrigerators

- Performance is determined by the doping concentration and operation temperature.
- Principle works for both refrigerators and power generators.

Key Points

- Nanoscale effects are enabling breakthroughs in energy technologies.
- Need cost-effective and mass producible nanotechnology for energy applications.
- Fundamental understanding leads to new manufacturing paradigms.
- Fundamental research problems exist in both individual nanostructures and mesoscopic nanostructures.
- Multidisciplinary research and interdisciplinary researchers are needed.

ACKNOWLEDGMENTS

Current Members

- H. Asegun (Molecular Dynamics)
- V. Berube (hydrogen storage)
- Z. Chen (Metamaterials, TPV)
- S. Goh (polymers)
- T. Harris (Thermoelectrics&Nanomaterials)
- Q. Hao (Thermoelectrics)
- D. Kramer (Solar thermoelectrics)
- H. Lee (Thermoelectric Materials)
- H. Lu (TPV and PV)
- A. Minnich (thermoelectrics)
- A. Muto (nanowires and thermoelectrics)
- S. Nakamura (nanowires and thermoelectrics)
- A. Narayanaswamy (Metamaterials, TPV)
- G. Radtke (hydrogen storage)
- A. Schmidt (ps pump-and-probe)
- E. Skow (polymers)
- S. Shen (lubrication, rarefied gas dynamics)
- Dr. M. Chieso (nanofluids)
- Dr. X. Chen (thermoelectrics, Pump-and-Probe)
- Dr. D. Vashee (thermoelectrics)
- Prof. Y.T. Kang (nanofluids)

Collaborators

- M.S. & G. Dresselhaus (MIT, NW&CNT, Theory)
- J.-P. Fleurial (JPL, Thermoelectric Devices)
- J. Joannopoulos (MIT, Photonic Crystals)
- Z.F. Ren (BC, Thermoelectric Materials, CNT)
- X. Zhang (Berkeley, Metamaterials)

Past Members (Partial List)

- Prof. C. Dames (Nanowires, UC Riverside)
- Prof. D. Borca-Tasciuc (Nanowires, RPI)
- Prof. T. Borca-Tasciuc (Thermoelectrics, RPI)
- Dr. F. Hashemi (Nano-Device Fabrication)
- Dr. A. Jacquot (TE Device Fabrication)
- Dr. M.S. Jeng (Nanocomposites, ITRI)
- Dr. R. Kumar (Thermoelectric Device Modeling)
- Dr. W.L. Liu (superlattice)
- Dr. D. Song (TE and Monte Carlo, Intel)
- Dr. S.G. Volz (MD, Ecole Centrale de Paris)
- Prof. B. Yang (TE and Phonons, U. Maryland)
- Prof. R.G. Yang (Nanocomposites, U. Colorado)
- Prof. D.-J. Yao (TE Devices, Tsinghua Univ.)
- Prof. T. Zeng (Thermionics, NCSU)

Sponsors: ARO, DOE, NASA, NSF, ONR, Industries

