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Enzymatic BioelectrocatalysisEnzymatic Bioelectrocatalysis

G.T.R. Palmore, et al. J. Electroanal. Chem. 443 (1998) 155.
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A Working Ethanol BioA Working Ethanol Bio--FC (EBFC)FC (EBFC)
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Issues Critical to EBFCIssues Critical to EBFC

Power Density: Achievable power density is still far 
below theoretical value

Enhance enzyme loading
Minimize conductive loss

Electronic conductive network
Proton pathway

Improve charge transfer efficiency
Minimize transfer steps
Promote direct transfer

Facilitate fluid transport
Pore structure engineering:      surface area vs. porosity •
dimensionality • directionality • interconnectivity of pores

Life (Stability)
Micro chemical environment engineering



In Situ CharacterizationsIn Situ Characterizations

Enzyme loading: spatial distribution and local 
(meso-scale) chemical environment

Fluorescence imaging
Tagged enzymes

Fluorescence polarization
Reaction kinetics: temporal resolution

Electrochemical imaging ellipsometry + QCM
Mass transport

In situ characterization of permeability relative to 
direction of flow
Porosity, pore/channel size, accessible surface 
area



Need for In Situ CharacterizationsNeed for In Situ Characterizations

In today’s nano-material and bioengineering 
research, control of materials synthesis and 
process require fast, non-intrusive, in-situ 
characterization over a large sample area. 
For enzymatic biofuel cell applications, such in situ, 
non-intrusive observations are highly desirable. 
Example:

Imaging ellipsometry + quartz crystal microbalance 
(QCM) + electrochemical techniques (e.g., CV, EIS), 
to study nano-materials and their properties:

Microstructure & surface morphology
Reaction kinetics
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Probing Micro EnvironmentsProbing Micro Environments

Fluorescent laser scanning 
confocal microscope (LSCM) 

images of co-immobilized 
Alexa-labeled dehydrogenase 

(green) and TAMRA-labeled 
lysozyme (red) in (A) Eastman 

AQ 55 (B) chitosan. (Scale 
bars: 50 µm.) 

LSCM images of ADH 
tagged with Alexa-488 
entrapped in (A) Eastman 
AQ 55 polymer matrix: 2-D 
slice; (B): 3-D 
reconstruction from 2-D 
slices; (C): Nafion: 2-D 
slice. (Scale bars: 50 µm.) A B C

A. Konash et al. J Mat. Chem. 16 (2006) 4107.



Micro and Nano Materials SynthesisMicro and Nano Materials Synthesis

Develop highly porous conductive polymer 
matrices:

High enzyme loading
Effective mass transport
Highly conductive network
Favorable micro environments for immobilization

Polypyrrole (PPy) porous nano-fabrics, V. Svoboda et al. (2006)

1 µm
5 µm

10 µm

e-



Macro & Meso Pore Structure Macro & Meso Pore Structure 
Engineering Engineering 

M. Windmeisser et al. (2006)

Correlation of mean pore size d
versus freezing duration
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DET in PQQDET in PQQ--GDHGDH--ChitosanChitosan--CNTCNT
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Imaging Ellipsometry (IE)Imaging Ellipsometry (IE)

1) Locate region-of-interest 
2) Real-time laser image 

observation via CCD 
camera

3) Measurement of ∆ and Ψ 
in spatial distribution 
(600×400 µm)

Live microscopic laser contrast image
( 600 × 400 µm )



Polypyrrole DepositionPolypyrrole Deposition

Electrochemical Deposition & Control
Fabrication conditions

Imaging Ellipsometry
Film thickness
Surface morphology

Nafion0.5 mA/cm2 1 mA/cm2 2 mA/cm2

V. Svoboda et al. (2005)



PolyPoly--MG Modified SurfaceMG Modified Surface

Nafion V. Svoboda et al. 
J. Electrochem. Soc. 154 (2007) D113.

Electrochemical 
Deposition & Control

Fabrication conditions
Imaging Ellipsometry

Film thickness
Surface morphology

CV deposition of MG 
on Pt
–0.5 V 1.2 V 
(vs. Ag/AgCl) 
Scan rate: 50 mV/sec

Thickness = -0.0074 c3 + 0.1969 c2 + 1.0279 c - 0.1632
R2 = 0.9998
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Electrochem. Microgravimetric IEElectrochem. Microgravimetric IE
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Current & Mass ChangesCurrent & Mass Changes
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Current & Ellipsometric AnglesCurrent & Ellipsometric Angles
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Reduction of MG to Reduction of MG to ll--MGMG

In the reduction phase: the mass deposition was driven by 
adsorption, followed by electrochemical reduction of MG to l-MG

Faraday’s law
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Mass & Mass & ∆∆

The progression of ∆ and d(∆)/dt follows mass changes.



Mass, Current, & Mass, Current, & ΨΨ

The progression of Ψ and d(Ψ)/dt reflect both mass and chemical 
changes in the film.



ConclusionConclusion

Enzymatic bio-fuel cells need delicate optimization 
of electrode fabrication, which requires pore 
structure engineering, from macro- to meso-scale.
Nano-material synthesis and electrode fabrication 
require in situ observations and non-intrusive 
characterizations of the process.
Several intriguing in situ characterization 
techniques were demonstrated of their utility: 

Fluorescence and polarization
Imaging ellipsometry + QCM + Electrochem. tech.
Microporometry

Dynamic transient observations mechanistic 
details



Thank you for your attention!Thank you for your attention!
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