

In the beginning God created the heaven and the earth. Genesis 1:1

Contents

1. Introduction

Global energy demand/market Drawbacks of Si-based solar cell New types of solar cell

2. Hybrid solar cell

Definition Problems in interfacial contact Liquid-phase preparation of semiconductor this films Water-soluble polyacetylene photosensitizers Modification of hydrophilicity by anion exchange

Energy Demand in near future

* Present: 12.8 TW 2050년 : 28-35 TW

* Needs at least 16 TW
Bio: 2 TW
Wind: 2 TW
Atomic: 8 TW (8000 power plant)
Fossil: 2 TW

* Solar: 160,000 TW

Solar Energy

지구상 도달하는 태양에너지 15분 어치

- : 인류 1년간 에너지 소모량
- 1년간 지구표면에 도달하는 태양에너지: 세계 전체 에너지 소비량의 2만배
 - 대기권외에 받는 태양에너지의 밀도; 1㎡ 당 1.35kw
 - 지구가 태양복사를 받는 단면적은 1.275 x 10¹⁴ ㎡
 - 지구가 받는 총에너지량: 1.73 x 10¹⁴ Kwh (1.48 x 10¹⁷ Kcal)

30%는 직접 반사, 70%인 1.04 x 1017 Kcal가 지구에 도달

우리나라의 평균일사량은 ㎡ 당 약 2,000 Kcal/day

- 무한정, 무공해
- 저밀도, 오직 낮에만....

Wavelength [µm]

Market Forecasting

c-Si
thin film
New Concepts

2010년 360억불 시장예상 10년 내 현 반도체 시장 규모에 필적

Source: EPIA (2005.11)

Solar cells Market

Solar cell technologies

Thin Film Solar Cell

Bell Telephone Laboratories crystalline Si cell reported in 1954 Bell cells and first solar module (6%)

Limit of Efficiency

Jenny Nelson, The Physics of Solar Cells, 2003

태양전지의 종류에 관계 없이 P-N 접합 Single cell 의 이론적 효율 한계: 32 % 유기 태양전지의 경우 태양광의 흡수 정도를 고려해야 함 Tandem Cell 의 경우 이 이상 가능

Generation of Solar cells

Best Solar cell

Spectrolab. 40.7% *Nature*, **2006**, *444*, 802,

Source: NREL

Drawbacks of Si-based Solar Cells

Environmental Problems

High production cost

High energy intensive process

Instability of Si supply

실리콘 태양전지의 생산 과정의 공해배출 물질

"Life Cycle Assesment of Photovoltaic System" *Progress in Photovoltaics: Research and Application* 2005, 13, 429.

Payback Time of Si-based Solar Cells

Energy and Environmental Payback Time of 3 kWp Si Solar Cells

"Life Cycle Assesment of Silicon Photovoltaic System" *Progress in photovoltaics: Research and Application* 2005, *13*, 429.

Photovoltaic module price/Wp vs. cumulative production

A. Slaoui et at. MRS 2007, 32, 211

New Types of Solar Cell

Thin Film Inorganic Solar Cells

NanoSolar Co./California/USA

CIGS (Copper-indium-gallium-sulfide) based-thin film solar cells Production capacity: 430 MW/year Production cost: 10-20% of silicon solar cell Roll to Roll process: 3 mile solar cell/polymer roll

> Construction cost for 400 MW : 1 billion dollars for silicon solar cells 0.1 billion dollars for thin film solar cells

0.1 billion investment from Google and others

전자신문 2006년 6월 23일

Nano-Size TiO₂ based Dye-sensitized Solar Cell

Organic Solar Cells

p-type : conducting polymer

- ---> 100~300 nm
- ---→ 0.1~1 nm
- ---→ 50~400 nm
- --→ 30~100 nm

Total device thickness < 1 μm (except ITO substrate)

n-type : nano particle

PCBM $\mu_{e} = 2 \times 10^{-3} \text{ cm/Vs}$

2. Hybrid solar cells

Definition

Liquid phase synthesis of inorganic semiconductors

Water-soluble polymers for the interfacial contact

Modification of hydrophilicity by anion exchange

New Types of Solar Cells

Liquid-phase preparation of inorganic semiconductors

 \blacktriangleright Nanocrystalline TiO₂/ZnO by layer-by-layer deposition

> Cd(OH)₂ of n-type and HgCr₂S₄ of p-type by layer-by-layer deposition

 \succ CdO nanowires, TiO₂, ZnO by chemical bath deposition

CdSe nanowires by electrodeposition

Gas-phase thin-films preparation methods

Vacuum evaporation	Gas Phase	Sputtering
Resistive heating Flash evaporation Electron beam evaporation Laser evaporation Arc evaporation Radio frequency (RF) heating	Chemical vapor deposition Laser chemical vapor deposition Photo chemical vapor deposition Plasma-enhanced chemical vapor deposition Metal -organochemical vapor deposition	Glow discharge DC sputtering Triode sputtering Getter sputtering Radio frequency (RF) sputtering Magnetron sputtering Face target sputtering Ion beam sputtering AC sputtering

Liquid-phase thin-films preparation methods

Chemical bath deposition Layer-by-Layer deposition (LbL) Spray pyrolysis Electrodeposition Electroless deposition Anodization Liquid phase epitaxy Sol gel process Langmuir-Boldgett (LB) technique

Inexpensive chemical deposition methods

Nanocrystalline TiO₂/ZnO by layer-by-layer deposition

TABLE I. DSSCs performance of TiO_2 (N3) and ZnO coated TiO_2 (N3) electrodes under the light intensity of 80 mW/cm².

Electrode	$V_{\rm oc}~({\rm V})$	$J_{\rm sc} ({\rm mA/cm^2})$	FF	η (%)
TiO ₂ (N3)	0.49	13.2	0.40	3.31
TiO ₂ (N3)/ZnO (30 nm)	0.62	11.7	0.52	4.51
TiO ₂ (N3)/ZnO (60 nm)	0.59	4.51	0.55	2.50
TiO ₂ (N3)/ZnO (150 nm)	0.54	4.14	0.55	1.59
TiO ₂ (N3)/ZnO (300 nm)	0.47	0.61	0.51	0.18

Figure 1. Photoimages of the surfaces of (a) TiO_2 , (b) TiO_2/ZnO , and (c) TiO_2/ZnO with N3 dye. The images were taken under a white light source.

Figure 3. SEM images of (a) the as-deposited TiO_2 thin film and (b) with TiO_2/ZnO thin film deposition. The images were recorded at different magnification due to the differences between the structure of the TiO_2 and ZnO samples.

J. Phys. Chem. B 2005, *109*, 24254. *Appl. Phys. Lett.* 2006, *89*, 253512 *Electrochimica Acta* 2005, *50*, 2453

CdO nanowires by chemical bath deposition (CBD)

X100K 300nm 15.0kV

Energy conversion efficiency: ~1% under 80 mW/cm²

Solar Energy 80 (2006) 185 J. Photochem. Photobio. A in press

Different morphologies of heterojunction cells.

Hybrid Solar Cells with Quantum Dots

$$Eff = 1.7 \%$$

✓ A. P. Alivisatos et. al. Science 2002, 295, 2425
 ✓ A. P. Alivisatos et. al. Adv. Mater. 1999, 11, 923

ZnO nanoparticles bending in P3HT polymers

Eff = 0.92 %

✓ R. A. J. Janssen *et. al. Adv. Funct. Mater.* 2004, *16*, 1009.
 ✓ R. A. J. Janssen *et. al Adv. Funct. Mater.* 2006, *16*, 1112.

Infiltrating semiconducting polymers into mesophorous films

Fig. 1. Mesoporous titania characterization. X-ray diffraction patterns of mesoporous titania before (a) and after (b) calcination at 400 °C, and HRSEM images of calcined mesoporous titania at two different magnifications (c,d). Pores with 3-fold rotational symmetry are shown in (d). Spin coating and high temperature treatment 100-200 °C, 1 min – 48 hr

Only 33% of the total volume of the film can be filled with a semiconducting polymer

Eff = 0.13 %

Infiltration and in-situ polymerization

Role of linkage groups and their hydrophilicity

✓ J. T. McLeskey, Jr. , Appl. Phys. Lett. 2005, 86,153501.

Preparation of CdS nanoparticles on ITO by CBD

Nanocrystalline CdS film on ITO; (a) SEM, (b) TEM (inset: SAED),
 (c) high-resolution TEM (inset: magnified image) and (d) water contact angle

J-V curves of hybrid polymer solar cells on CdS/ITO in the presence of I⁻/I₃⁻/CH₃CN

7.42

CdS/LM 3

0.65

In the presence of TiO2 layers as a hole blocking layer

0.39

2.37

J-V curves of hybrid polymer solar cells on SWNTs/CdS/ITO

CdSe	Voc (V)	Jsc (mA/cm ²)	FF	Eff (%)
CdS	0.68	1.27	0.36	0.39
TiO ₂ /CdS	0.63	1.36	0.37	0.40
SWNT/CdS	0.66	1.44	0.37	0.44
CdS/LM 3	0.69	3.85	0.37	1.22
TiO ₂ /CdS/LM 3	0.65	7.42	0.39	2.37
SWNT/CdS/LM 3	0.63	7.12	0.39	2.19

Preparation of Macaroni-Shaped In₂S₃ nanorods

SEM image (scale bar : 300 nm) of In_2S_3 film on ITO; prepared by the addition of 0.1 M HCl (a) 0 vol %, (b) 2 vol %, (c) 4 vol % and (d) 6 vol %.

Hybrid solar cells with P3HT as a hole transporting materials

-6.4 eV

I-V characteristic of hybrid solar cell

ITO/CdS/LM4/P3HT/Au	Voc (V)	Jsc (mA/cm ²)	FF	<i>Eff</i> (%)
without LM4	0.43	0.89	0.44	0.17
dip-coated LM4	0.52	3.01	0.37	0.58
in situ polymerized LM4	0.54	4.84	0.45	1.19

Summary

- Interfacial contact in hybrid solar cells was optimized using watersoluble polymer photosensitizers
 - Water-soluble, acetylene-based polymer photosensitizers was developed and its surface hydrophilicity was modified by anion exchange method
 - Fabrication of electrochemical solar cells with acetylene-based polymer - A power conversion efficiency of 2.37%
 - Solid-state hybrid solar cells with hydrophilicity control
 - A power conversion efficiency of 1.19%

Members Post Doctor & Researcher Dr. Mane

Ph.D. Candidate W. Lee., S-K. Min.

M.S. Candidates K.-K. Park., G. Cai., J.-Y. Park., M.-R. Park., J.-H. Ahn.