The 4th US-Korea NanoForum

Material and Structural DesignKore Institute offor High Efficiency Dye-Sensitized Solar Cell

Hyungjun Koo, Beomjin Yoo, Kicheon Yoo, Kyungkon Kim and Nam-Gyu Park*

Center for Energy Materials Korea Institute of Science and Technology (KIST)

DSSC: structure and operation principle

Korea Institute of Science and Technology

issues

* efficiency as high as 11% has been achieved.

* higher efficiency is required in order to be in competition with Si solar cell

Approaches for improving efficiency

13%	Efficiency (n) = $(I_{sc} \times V_{oc} \times FF)/P_{in}$									
n (%)	$J_{ m sc}$		V _{oc}	FF	P _{in}	cf.				
10 → 13	18 → 23.4		0.75	0.74	100	Case1: J _{SC} increased by 30%				
13%	Efficiency (n) = $(J_{sc} \times PF)/P_{in}$									
n (%)	J _{sc}	V∕ _{oc}		FF	P _{in}	cf.				
10 → 13	18	0.75 → 0.98		0.74	100	Case2: V _{OC} increased by 30%				

strategy for improving J_{sc}

structural and material design

light confinement by scattering:

size-dependent scattering efficiency & bi-functional material

nanoparticle films for DSSC

 $t = 5-6 \ \mu m$ $t = 10-12 \ \mu m$ 9.0 9.0 8.5 8.5 Efficiency (%) Efficiency (%) ļ Ī 8.0 8.0 7.5 7.5 7.0 7.0 190 200 210 220 230 240 210 220 180 230 240 Autoclave Temp. (°C) Autoclave Temp. (°C)

Simple increase of nanoparticle film may not improve the efficiency to great extent!

size-dependent scattering efficiency

Korea Institute of Science and Technology

	J _{sc} (mA/cm²)	V _{oc} (mV)	FF(%)	<i>Eff.</i> (%)	Increasing rate
1L (~7 μm)	$\textbf{12.2}\pm\textbf{0.1}$	868 ± 2	$\textbf{71.1} \pm \textbf{0.1}$	$\textbf{7.55} \pm \textbf{0.12}$	
1L+G1	$\textbf{14.9} \pm \textbf{0.0}$	852 ± 2	$\textbf{70.4} \pm \textbf{0.3}$	$\textbf{8.94} \pm \textbf{0.08}$	+18.4%
1L+G2	$\textbf{14.4} \pm \textbf{0.1}$	866 ± 1	$\textbf{70.7} \pm \textbf{0.4}$	$\textbf{8.78} \pm \textbf{0.09}$	+16.3%

bi-functional material

* spherical or flat surface large particles are normally used for light scattering

(c)

- * except light scattering, such materials do not contribute to photocurrent generation due to low surface area
- * motivation: design of bi-functional material exhibiting both light scattering and photocurrent generation efficiently

Nano-Embossing Hollow Sphere TiO2 (prepared by Prof. W.-I. Lee)

IPCE & reflectance comparison

conversion efficiency

without long-term post-treatment of TiCl4

11

Korea Institute

interfacial nano-engineering

locus of recombination

Korea Institute o Science and Technology

methods for suppression of recombination

15

FTO/BL/TiO2: SEM

Chemically formed from Ti precursor solution

effect of Ti-precursor concentration on PV property

Korea Institute of

EIS (bode plot)

Frequency, Hz

10³

10²

Β

Α

10⁴

A: pt/electrolyte; B: FTO/electrolyte; C: TiO2/dye/electrolyte

Korea Institute of Science and Technology

Surface modification of bulk TiO2 film: fast electron transport, slow recombination

DSSC best efficiency

close to the world best efficiency of 11.1% from EPFL

KIST Activity: Organic Photovoltaics

Korea Institut

Acknowledgments

Korea Institute o Science and Technology

KIST Specialists Laboratory for Dye-Sensitized & Organic Solar Cells *\$\$\$: KIST, MOST and MOCIE*