

과 학 기 술 부 21세기 프론티어연구개발사업 21st Century Frontier R&D Program

APPLICATION OF NANOTECHNOGY ON HYDROGEN PRODUCTION AND STORAGE IN KOREA

April 26~27, 2007

Jong Won Kim Director Hydrogen Energy R&D Center http://www.h2.re.kr

Hydrogen Economy-Vision Fechnical-barrier Ourrent R2-D activities related

to nanotechnology IV. Conclusions

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

Mat Canton Engeli

1. Hydrogen economy-vision

Hydrogen Economy

2. Technical barriers

* Source: Bongjin Kim et al: "The status of domestic hydrogen production, consumption and distribution", Trans. Of the Korea Hydrogen and New Energy Society, 16(4)391-399(2005)

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

3-1 current R&D activities

Summary of Hydrogen & Fuel Cell R&D program

Table 1. Hydrogen & Fuel Cell R&D program in Korea

Program	Sponsor	Period
21 st Frontier Program (Hydrogen Energy R&D Center) (www.h2 re.kr)	MOST	2003-2013
National RD&D Organization for hydrogen and fuel cell (www.h2irc.kr)	MOCIE	2003-
Nuclear Hydrogen Development and Demonstration Project (NHDD) (www.bydrogen.re.kr)	MOST	2004-2021
Korea IGCC RDD&D Organization (www.iiydrogen.re.kr)	MOCIE	2006-2014

MOCIE: Ministry of Commerce, Industry and Energy **MOST :** Ministry of Science and Technology

The 21st Century Frontier

21세기 프론티어사업

HERC

(Hydrogen Energy R&D Center)

3-1 current R&D activities

• Role

- Developing the National Hydrogen Energy R&D Program
- * 21st Century Frontier Program
- R&D Period

01 Oct. 2003 ~ 31 March 2013 (9.5 years for 3 phases)

• R&D Fund

Total 90 million US dollars

(Government : 80 million dollars, Industry : 10 million dollars)

• Sponsoring Ministry Ministry of Science & Technology, Republic of Korea

Source: www.h2.re.kr

National RD&D Organization for Hydrogen and Fuel cell

- **Established in 2003 to expedite the commercialization of hydrogen and fuel cell technology.**
- Propose the vision for hydrogen economy in Korea.
- Develop a national plan, road maps and action plans to create a new industry.
- Coordinate and manage RD&D programs supported by government.

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

The 21st Century Frontier

21세기 프론티어사업

Nuclear Hydrogen Development and Demonstration Project

- To build 200MWth class VHTR and to produce 20 thousand tons of hydrogen .
 - ➢ Period : 2004 − 2021 (18years)
 - Budget : ~ US\$ 1.0 Billion (under discussion)

□ Korea IGCC RDD&D organization

R&D Activities in the Phase II (HERC)(2006-2009)

Hydrogen Production	Action type	
NG steam reforming for hydrogen station	(AR/DE)	(Mid)
Biological hydrogen production	(BR/AR/DE)	(Long)
Thermo-chemical hydrogen production	(BR/AR/DE)	(Long)
Photocatalytic and photochemical hydrogen production	on (BR/AR/DE)	(Long)
► Water electrolysis using PEM and THE	(BR/AR/DE)	(Long)
Hydrogen Storage		
► Hydrogen storage using metal hydrides	(BR/AR/DE)	(Long)
► Hydrogen storage using nano-structured materials	(BR/AR/DE)	(Long)
Hydrogen storage using chemical hydrides	(BR/AR/DE)	(Long)
Hydrogen Utilization		
Linear power/generation system of hydrogen combust	ion (AR/DE)	(Long)
► Hydrogen sensor	(AR/DE)	(Long)
 Supporting Project Measurement techniques for hydrogen storage materi Policy and technology assessment 	als	

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

The 21st Century Frontier

21세기 프론티어사업

> **HERC** Driver to the Future

Biological Hydrogen Production

R & D Objectives

프론티어사업

-Scale-up and optimization of fermentative H_2 production process and development of bio-mimetic H_2 production system

The 21st Century Frontier

- ► Fermentative bioreactor scale : > 500 L
- Fermentative H_2 productivity : 15 Nm³ $H_2/day/m^3$

• H_2 productivity by bio-mimetic system : 40 L H_2/kg protein/hr

Recent publications:
 Int.J.Hydrogen Energy,31(2006)812-816
 Int.J.Hydrogen Energy,31(2006)121-127
 Korea Patent 2005-0032480

Bioreactors for photosynthetic and fermentative H₂ production

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

The 21st Century Frontier

related to nanotechnology Nanotechnology and Biological hydrogen production

- Introducing nano-size membrane to bioreactor for enhancing hydrogen production
- Adjusting the pore size(40,100nm) for long term operation

3-2. current R&D activities

Membrane bioreactor (working vol. 2.4 L) using **PVDF** hollow-fiber

21세기 프론티어사업

3-2. current R&D activities related to nanotechnology

Hydrogen production using membrane bioreactor at 60°C

🗩 microorganism

hydrogenase

3-2. current R&D activities related to nanotechnology

Photocatalytic and Photoelectrochemical Hydrogen Production Technology

R&D Objectives

21세기 프론티어사업

- Development of the system for 3% solar light conversion efficiency (@AM 1.5) utilizing solar light-sensitizing photocatalyst
- System establishment for PEC cell of 7% efficiency

Content of R&D Activities

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

- Highly active water splitting photocatalysts- material design
- Tandem-type photoelectrochemical cell modules
- PEC cell of 7% efficiency
- Photo/Biocatalyst
- Q-sized photocatalysts and mesoporous media
- Layered Perovskite and Composite Photocatalysts

KRICT, KIER, KIST, POSTECH, Nanopac

If any question, contact: Dr. Moon,Sang-Jin moonsj@krict.re.kr

3-2. current R&D activities

Nanotechnology and sensor

- Enhancement of gas sensitivity using ceramic nano particles with high surface area
 - Semiconductor type hydrogen sensor
 - measure the change of resistance of semiconducting material (such as SnO_2 , In_2O_3 , TiO_2 etc) according to the adsorption of hydrogen gas. Nano sized semi-conducting material could enhance the sensitivity.
 - Catalytic combustion type sensor
 - nano sized supporting material could enhance the sensitivity of sensor

Chi-Hwan Han et. al, "Micro-bead of nano-crystalline F-doped SnO₂ as a sensitive hydrogen gas sensor", Sensors & Actuators B, 2005, 109, 264-269. Chi-Hwan Han et. al, "Enhancement of H₂-sensing Properties of F-doped SnO₂ Sensor by Surface Modification with SiO₂", Sensors, 2006, 6, 492-502.

21세기 프론티어사업

3-2. current R&D activities related to nanotechnology

Enhancement of sensitivity using nano materials

• Linearity of sensitivity of ceramic hydrogen sensor using nano particle

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

Enhancement of sensitivity of catalytic combustion type hydrogen sensor using nano particle or nano rod of Pd/TiO₂, Pt/TiO₂

400

Pressurized hydrogen storage vessel

Process design and analysis

Filament winding and solidification

3-2. current R&D activities related to nanotechnology

Proto type vessel

Analysis using finite element method

liner

Storage vessel after coating process

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

21세기 프론티어사업

3-2. current **R&D** activities related to nanotechnology

Fig. Gas Permeability of the nanocomposites for various clay contents

PE-Clay nano composite liner : gas interrupting characteristic

-> increased to 30% than its predecessors

liner thickness

-> could be reduced.

7% clay-> the tensile modulus increased about 49% the tensile strength increased about 15% as compared with pure polyethylene.

Source: Joong-Hee Lee et al, "Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer", Composite Science and Technology (2005))

21세기 프론티어사업

3-2. current **R&D** activities related to nanotechnology

Effective hydrogen storage capacity < Target

Figure 1 Storage density for various H2 storage forms (Source: Schlapbach and Züttel, Nature, 2001 [1]).

- Alanate- complex metal hydride with more than 5 wt% effective hydrogen storage capacity
- decomposition temperature of alanate
- Introducing nano sized particles
 - generating nanocrystallites through ball-milling

The 21st Century Frontier

- introducing the titanium nanoparticle as a catalyst

3-2. current R&D activities

Ball-milling LiAIH4 and Li3AIH6 causes "the formation of a fine grain size below 20 nm (Chen et al., 2001)

3-2. current R&D activities related to nanotechnology

Lithium alanate system

DSC and TG curves of Li₃AIH₆ with and without catalysts

• $Li_{3}AlH_{6} \rightarrow 3LiH + Al + 3/2H_{2}$

The 21st Century Frontier

21세기 프론티어사업

Amount of hydrogen released from Li_3AIH_6 during thermal decomposition at 150°C as a function of time

• Y.W.Cho et al, Thermal decomposition of Li3AlH6 with TiAl3 catalyst, catalysis today (Feb.2007)

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

Carbon base nanomaterials

3-2. current R&D activities related to nanotechnology

SHILL

PVdF based Carbon Nanofiber

Surface Modified ACFs

Hydrogen storage site of carbon nanotube

fullerene

The 21st Century Frontier

3-2. current R&D activities related to nanotechnology

Nanotechnology and carbon base materials

- High surface materials with nano pore for high hydrogen storage capacity
- Nanopore exposition- surface oxidation at high temperature.

Carbon nanofiber with surface area about 300 m^2/g could be changed to multipore nanofiber with high surface area (${>}2000~m^2/g$) through a series of oxidation processes

- introduction of metal nano particles in order to control hydrogen adsorption sites
- introducing metal particles with controlled size- current density and time using electrolysis and non-electrolysis

Introduction of Ni nanoparticle to the nanofiber surface using electrolysis and non-electrolysis

• Y.S,Lee et al, "The adsorption properties of surface modified activated carbon fibers for hydrogen storages", catalysis today (Feb.,2007)

4th US-Korea NanoForum, Honolulu, USA, April 26-27, 2007

The 21st Century Frontier

4. conclusions

- We have investigated various materials including MOF, organoporous nanomaterial, inorganic materials based on molecular modeling and we attempted to improve surface functionality of those materials.
- But the hydrogen storage capacity is still low at moderate condition.
- We will investigate the mechanism for the adsorption of hydrogen on nanoporous material.
- we will setup the virtual screening protocol for the nanoporous materials.

Zn(dhBDC): Zn₂O₂(BDC)ntour Maps of electrostatic potentials ; (a) IRMOF-1, (b) IRMOF-3

4. conclusions

Think Together!

- There are lots of hurdles to hydrogen production and storage
- Nanotechnology will help to overcome those barriers.

There is nothing either good or bad. But thinking make it so.
Value is always every where!

